A particle is settling in a liquid under Stokesian conditions. The free falling velocity of the particle is proportional to
(A) √(Particle diameter)
(B) Particle diameter
(C) (Particle diameter)2
(D) (Particle diameter)3

1 Answer

Answer :

B) Particle diameter

Related questions

Description : A particle A of diameter 10 microns settles in an oil of specific gravity 0.9 and viscosity 10 poise under Stoke's law. A particle B with diameter 20microns settling in the same oil will have a settling velocity (A) ... ) One fourth as that of A (C) Twice as that of A (D) Four times as that of A

Last Answer : (B) One fourth as that of A

Description : The settling velocity of a spherical particle of diameter less than 0.1 mm as per Stock’s law, is A. Vs = 418 (Gs – Gw) d [(3T + 70)/100] B. Vs = 418 (Gs – Gw)d² [(3T + 70)/100] C. Vs = 218 (Gs – Gw)d² [(3T + 70)/100] D. Vs = 218 (Gs – Gw)d [(3T + 70)/100]

Last Answer : ANS: B

Description : If the specific gravity of a soil particle of 0.05 cm diameter is 2.67, its terminal velocity while settling in distilled water of viscosity, 0.01 poise, is (A) 0.2200 cm/sec (B) 0.2225 cm/sec (C) 0.2250 cm/sec (D) 0.2275 cm/sec

Last Answer : (D) 0.2275 cm/sec

Description : In the Newton's law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass is __________ the fluid viscosity. (A) Directly proportional to (B) Inversely proportional to (C) Inversely proportional to the square root of (D) Independent of

Last Answer : (B) Inversely proportional to

Description : The terminal velocity of a solid spherical particle falling through a stationary fluid mass in the Stoke's law range is proportional to the (A) Inverse of fluid viscosity (B) Square of particle size (C) Difference in the densities of the particle & fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : In Newton's law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass varies as the __________ of its diameter. (A) Inverse (B) Square root (C) Second power (D) First power

Last Answer : (B) Square root

Description : For a particle settling in water at its terminal settling velocity, which of the following is true? (A) Buoyancy = weight + drag (B) Weight = buoyancy + drag (C) Drag = buoyancy + weight (D) Drag = weight

Last Answer : (B) Weight = buoyancy + drag

Description : In a sedimentation tank (length L, width B, depth D) the settling velocity of a particle for a discharge Q, is A. Q/(B × D) B. Q/(L × D) C. Q/L D. Q/(B × L)

Last Answer : ANS: D

Description : The terminal velocity of a small sphere settling in a viscous fluid varies as the (A) First power of its diameter (B) Inverse of the fluid viscosity (C) Inverse square of the diameter (D) Square of the difference in specific weights of solid & fluid

Last Answer : (B) Inverse of the fluid viscosity

Description : For motion of spherical particles in a stationary fluid, the drag co￾efficient in hindered settling compared to that in free settling is (A) More (B) Less (C) Equal (D) More or less, depending on the type of particle

Last Answer : (A) More

Description : For the free settling of a spherical particle through a fluid, the slope of, CD-log NRe , plot is (A) 1 (B) -1 (C) 0.5 (D) -0.5

Last Answer : (B) -1

Description : Torricelli's theorem states that the velocity ‘v’ of the liquid emerging from the bottom of the wide tank is given by √(2gh). In practice, this velocity is: A. equal to √(2gh) B. greater than √(2gh) C. lesser than √(2gh) D. independent of height and gravitational field strength

Last Answer :  lesser than √(2gh

Description : To prevent settling down of sewage both at the bottom and on the sides of a large sewer, self-cleaning velocity recommended for Indian conditions, is A. 0.50 m/sec B. 0.60 m/sec C. 0.70 m/sec D. 0.75 m/sec

Last Answer : ANS: D

Description : For small temperature difference, the heat transfer rate as per Newton's law of cooling is proportional to (where, Δt = excess temperature) (A) Δt (B) Δt 2 (C) Δt 3 (D) √(Δt)

Last Answer : (A) Δt

Description : The specific surface of spherical particles is proportional to (where, Dp = diameter of particle). (A) D2 p (B) Dp (C) 1/Dp (D) 1/D2p

Last Answer : (C) 1/Dp

Description : For the non catalytic reaction of particles with surrounding fluid, the same needed to achieve the same fractional conversion for particles of different unchanging sizes is proportional to the particle diameter, when the ... through ash layer (C) Chemical reaction (D) Either (A), (B) or (C)

Last Answer : (C) Chemical reaction

Description : For the non-catalytic reaction of particles with surrounding fluid, the time needed to achieve the same fractional conversion for particles of different but unchanging sizes is proportional to the square of particle diameter, ... through ash layer (C) Chemical reaction (D) Either (A), (B) or (C)

Last Answer : (B) Diffusion through ash layer

Description : According to Bond crushing law, the work required to form particle of size 'D' from very large feed is (where (S/V)p and (S/V) f are surface to volume ratio of the product and feed respectively). (A) (S/V)p (B) √(S/V)p (C) (S/V) 2 p (D) (S/V) f

Last Answer : (B) √(S/V)

Description : Sorting classifiers employing differential settling methods forseparation of particles make use of the differences in their (A) Particle sizes (B) Densities (C) Terminal velocities (D) None of these

Last Answer : (C) Terminal velocities

Description : Particle size range in which dust catcher (gravity settling chamber) works most effectively and efficiently is __________ microns. (A) < 5 (B) 10 to 25 (C) < 74 (D) > 1000

Last Answer : (C) < 74

Description : Brownian movement is prominent in the particle size range of __________ microns in case of settling of a particle in a fluid. (A) 2 to 3 (B) 0.01 to 0.10 (C) 200 to 300 (D) 100 to 1000

Last Answer : A) 2 to 3

Description : Forces acting on a particle settling in fluid are __________ forces. (A) Gravitational & buoyant (B) Centrifugal & drag (C) Gravitational or centrifugal buoyant drag (D) External, drag & viscous

Last Answer : (C) Gravitational or centrifugal buoyant drag

Description : A spherical particle is falling slow in a viscous liquid such that Reynolds number is less than 1. Which statement is correct for this situation? (A) Inertial and drag forces are important (B) Drag ... forces are important (C) Drag force and gravitational forces are important (D) None of the above

Last Answer : (B) Drag, gravitational and buoyancy forces are important

Description : The equivalent diameter for pressure drop calculation for a duct of square cross-section is given by (where, x = each side of the square duct). (A) x (B) √(πx) (C) √(2x) (D) √(x/2)

Last Answer : (A) x

Description : A fluid is flowing inside the inner tube of a double pipe heat exchanger with diameter 'd'. For a fixed mass flow rate, the tube side heat transfer co￾efficient for turbulent flow conditions is proportional to (A) d 0.8 (B) d -0.2 (C) d -1 (D) d -1.8

Last Answer : (B) d -0.2

Description : For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) (A) μ (B) 1/μ (C) √μ (D) 1/√μ

Last Answer : (B) 1/μ

Description : For a sphere falling in the constant drag co-efficient regime, its terminal velocity depends on its diameter (D) as (A) d (B) √d (C) d 2 (D) 1/d

Last Answer : (C) d

Description : The actual velocity at vena-contracta for flow through an orifice from a reservoir is given by (A) Cv . √(2gH) (B) Cc . √(2gH) (C) Cd . √(2gH) (D) Cv . Va

Last Answer : (A) Cv . √(2gH)

Description : A bed of spherical particles (specific gravity 2.5) of uniform size 1500 μm is 0.5 m in diameter and 0.5 m high. In packed bed state, the porosity may be taken as 0.4. Ergun's equation for the above fluid-particle ... fluidisation velocity, VOM is (A) 12 mm/s (B) 16 mm/s (C) 24 mm/s (D) 28 mm/s

Last Answer : (B) 16 mm/s

Description : The detention time (t) of a settling tank, may be defined as the time required for A. A particle to travel along its length B. A particle to travel from top surface to bottom sludge zone C. The flow of sewage to fill the tank D. None of these

Last Answer : ANS: C

Description : A 30% (by volume) suspension of spherical sand particles in a viscous oil has a hindered settling velocity of 4.44 μm/s. If the Richardson Zaki hindered settling index is 4.5, then the terminal velocity of a sand grain is (A) 0.90 μm/s (B) 1 μm/s (C) 22.1 μm/s (D) 0.02 μm/s

Last Answer : (B) 1 μm/s

Description : A suspension of glass beads in ethylene glycol has a hindered settling velocity of 1.7 mm/s, while the terminal settling velocity of a single glass bead in ethylene glycol is 17 mm/s. If the Richardson-Zaki hindered settling index ... in the suspension is (A) 0.1 (B) 0.4 (C) 0.6 (D) None of these

Last Answer : (C) 0.6

Description : The terminal velocity of a sphere setting in a viscous fluid varies as : (a) The Reynolds number (b) The square of its diameter (c) Directly proportional to the viscosity of the fluid (d) Its diameter

Last Answer : (b) The square of its diameter

Description : A person of mass ‘m’ kg jumps from a height of ‘h’ meters, he will land on the ground with a velocity equal to: A. √(2 × g × h) B. 1/h × √(2 × g) C. 2gh D. 2√(g × h)

Last Answer : √(2 × g × h)

Description : Velocity of escape is equal to A. r √(2g); where r: radius of Earth or any other planet for that matter, g: gravitational field strength B. g √(2r); where r: radius of ... (2gr); where r: radius of Earth or any other planet for that matter, g: gravitational field strength

Last Answer : √(2gr); where r: radius of Earth or any other planet for that matter, g: gravitational field strength

Description : The expression for velocity of a wave in the conductor is a) V = √(2ω/μσ) b) V = √(2ωμσ) c) V = (2ω/μσ) d) V = (2ωμσ)

Last Answer : a) V = √(2ω/μσ)

Description : An electron and a neutron enter a magnetic field with the same velocity. Ratio of electron to neutron’s acceleration is a) mn me b) √ mn me c) √ me mn d) me

Last Answer : a) mn me

Description :  A coalescer in a mixer-settler liquid-liquid extraction column (A) Comprises of thin bed of substances of extended surface having high porosity (B) Helps in increasing the bubble size entering the settler ... increasing the settling rate of the bubbles (D) All 'a', 'b', & 'c'

Last Answer : (D) All 'a', 'b', & 'c'

Description : The settling velocity of the particles larger than 0.06 mm in a settling tank of depth 2.4 is 0.33 m per sec. The detention period recommended for the tank, is A. 30 minutes B. 1 hour C. 1 hour and 30 minutes D. 2 hours

Last Answer : ANS: D

Description : If L, B and D length, breadth and depth of water in a rectangular sedimentation tank of total  discharge Q, the settling velocity, is  (A) Q/H (B) Q/D (C) Q/(D × B)  (D) Q/(L × B) 

Last Answer : (D) Q/(L × B) 

Description : Pick out the correct statement. (A) Fanning friction factor is inversely proportional to Reynolds number always (B) The property of a randomly packed bed (with raschig rings) is given by the ratio of the ... the ratio of the speed of the fluid to that of sound in the fluid under conditions of flow

Last Answer : (D) Mach number is given by the ratio of the speed of the fluid to that of sound in the fluid under conditions of flow

Description : Which of the following statement is wrong? (A) A flow whose streamline is represented by a curve is called two dimensional flow. (B) The total energy of a liquid particle is the sum of potential energy, ... (D) A pitot tube is used to measure the velocity of flow at the required point in a pipe.

Last Answer : Answer: Option C

Description : Pick out the wrong statement about cavitation. (A) Sudden reduction of pressure in a fluid flow system caused by flow separation, vortex formation or abrupt closing of valve leads to cavitation ... (D) Large scale cavitation cannot damage pipeline, restrict fluid flow and damage steam turbine blades

Last Answer : (D) Large scale cavitation cannot damage pipeline, restrict fluid flow and damage steam turbine blades

Description : Vena-contracta formed during flow of a liquid through an orificemeter has (A) Minimum liquid cross-section (B) More diameter compared to orifice diameter (C) Minimum velocity of fluid stream (D) None of these

Last Answer : (A) Minimum liquid cross-section

Description : The drying time between fixed moisture content within diffusion controlled 'falling rate period' is proportional to (assuming that drying occurs from all surfaces of the solid) (where, T = thickness of the solid). (A) √T (B) T (C) T 2 (D) T

Last Answer : (C) T

Description : The resistance offered by the filter used in a bag filter is proportional to (where, c = dust concentration, and s = particle size). (A) c/s (B) s/c (C) s . c (D) 1/s . c

Last Answer : (A) c/s

Description : Rittinger's crushing law states that (A) Work required to form a particle of any size is proportional to the square of the surface to volume ratio of the product (B) Work required to form a ... ) For a given machine and feed, crushing efficiency is dependent on the size of the feed & product

Last Answer : (C) Work required in crushing is proportional to the new surface created

Description : Bond crushing law (A) Calls for relatively less energy for the smaller product particles, than does the Rittinger law (B) Is less realistic in estimating the power requirements of commercial crushers ( ... (D) States that the work required for the crushing is proportional to the new surface created

Last Answer : (A) Calls for relatively less energy for the smaller product particles, than does the Rittinger law

Description : In case of unsteady fluid flow, conditions & flow pattern change with the passage of time at a position in a flow situation. Which of the following is an example of unsteady flow? (A) ... level is maintained (D) Low velocity flow of a highly viscous liquid through a hydraulically smooth pipe

Last Answer : (B) Water flow in the suction and discharge pipe of a reciprocating pump

Description : For the liquid phase zero order irreversible reaction A → B, the conversion of A in a CSTR is found to be 0.3 at a space velocity of 0.1min -1 . What will be the conversion for a PFR with a space velocity of 0.2 min ... conditions are the same for CSTR and PFR. (A) 0.15 (B) 0.30 (C) 0.60 (D) 0.90

Last Answer : (C) 0.60