The natural frequency of following system is closest to1) 8Hz
2) 10Hz 3) 12Hz 4) 14Hz

1 Answer

Answer :

2) 10Hz

Related questions

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude, the natural frequency of longitudinal vibrations * 1 point (A) increases (B) decreases (C) remain unchanged (D) may increase or decrease depending upon the value of the mass

Last Answer : (C) remain unchanged

Description : A mass of 1 kg is attached to two identical springs each with stiffness k = 20 kN/m as shown in the figure. Under frictionless condition, the natural frequency of the system in Hz is close to * 1 point (A) 32 (B) 23 (C) 16 (D) 11

Last Answer : (A) 32

Description : The natural frequency of a spring-mass system on earth is ωn. The natural frequency of this system on the moon (g of moon = g of earth /6) is * 1 point (A) ωn (B) 0.408ωn (C) 0.204ωn (D) 0.167ωn

Last Answer : (A) ωn

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in A Transverse vibrations B Torsional vibrations C Longitudinal vibrations D None of the mentioned

Last Answer : A Transverse vibrations

Description : The static deflection of a spring under gravity, when a mass of 1 kg is suspended from it, is 1 mm. Assume the acceleration due to gravity g = 10 m/s^2. The natural frequency of this spring-mass system (in rad/s) is A 100 B 150 C 200 D 250

Last Answer : A 100

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 25.62 rad/sec B 20.78 rad/sec C 14.4 rad/sec D 15.33 rad/sec

Last Answer : A 25.62 rad/sec

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A 12.32 Hz B 4.10 Hz C 6.16 HzD None of the above

Last Answer : C 6.16 Hz

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A The frequency will increase B The frequency will stay the same C The frequency will decrease D None of these

Last Answer : C The frequency will decrease

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is A 1/2 B 1/3 C 1/4 D 3⁄4

Last Answer : B 1/3

Description : The motion of a system executing harmonic motion with one natural frequency is known as _______ A. principal mode of vibration B. natural mode of vibration C. both a. and b. D. none of the above

Last Answer : C. both a. and b.

Description : The number of natural frequency in two rotor system is A Zero B Infinite C Two D One

Last Answer : C Two

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 21 rad/sec B 25.62 rad/sec C 20.22 Hz D 3.15 Hz

Last Answer : B 25.62 rad/sec

Description : A spring mass system has time period of oscillation of 0.25 sec. What will be the natural frequency of the system? A 1 Hz B 2 rad sec C 4 rad/sec D 4 Hz

Last Answer : D 4 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 43200 N/m and mass of 12 kg. A 40.22 rad/sec B 40 Hz C 60 Hz D 60 rad/sec

Last Answer : D 60 rad/sec

Description : The natural frequency of a system is a function of A The stiffness of the system B The mass of the system C Both A and B D None of the mentioned

Last Answer : C Both A and B

Description : Natural frequency of the system is due to A Resonance B Forced Vibration C Damping D Free Vibration

Last Answer : D Free Vibration

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is A. 1/2 B. 1/3 C. 1/4 D. 3/4

Last Answer : B. 1/3

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A. 12.32 Hz B. 4.10 Hz C. 6.16 Hz D. None of the above

Last Answer : C. 6.16 Hz

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. A. 5.14 Hz B. 9.14 Hz C. 11.14 Hz D. 28.14 Hz

Last Answer : C. 11.14 Hz

Description : The motion of a system executing harmonic motion with one natural frequency is known as _______ A) principal mode of vibration B) natural mode of vibration C) both a. and b. D)none of the above

Last Answer : C) both a. and b.

Description : Critical speed of shaft and disc system A) Is equal to natural frequency of the system in transverse vibration B) Is equal to natural frequency of the system in torsional vibration C) Is ... of the system in longitudinal vibration D) Bears no relationship to any of the system natural frequency

Last Answer : A) Is equal to natural frequency of the system in transverse vibration

Description : Which of the following condition should be satisfied in the design of a vibration absorber ? A) Natural frequency of the auxiliary system should be equal to the natural frequency of the main ... D) Natural frequency of the auxiliary system should be twice natural frequency of the main system

Last Answer : A) Natural frequency of the auxiliary system should be equal to the natural frequency of the main system

Description : Semi definite system having one of their natural frequency equal to A) Four B) Three C) Two D) Zero

Last Answer : D) Zero

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A) 12.32 Hz B) 4.10 Hz C) 6.16 Hz D) None of the above

Last Answer : C) 6.16 Hz

Description : If frequency of excitation of a forced vibration system with negligible damping is very close to natural frequency of the system, then the system will A) Execute harmonic motion of large amplitude B) Beat with a very high peak amplitude C) Perform aperiodic motion D) None of the above

Last Answer : A) Execute harmonic motion of large amplitude

Description : If ωmax is the frequency at which the peak amplitude occurs and ωn is the natural frequency of the system then In a forced vibration system with damping, the higher the damping, A) More will be ... and ωmax is independent of damping in this system D) The difference between ωn and ωmax will be zero

Last Answer : A) More will be the difference between ωn and ωmax

Description : Damped natural frequency of a system with ωn =100 Hz and ς = 20% is given by A) 92 Hz B) 94 Hz C) 96 Hz D) 98 Hz

Last Answer : D) 98 Hz

Description : A forced vibration system vibrates at A) Natural frequency of the system B) Frequency of external excitation C) Frequency of internal excitation D) None of the above

Last Answer : B) Frequency of external excitation

Description : The effect of damping on the natural frequency of the system is to A) Reduce it considerably B) Increase it considerably C) Reduce it marginally D) Increase it marginally

Last Answer : C) Reduce it marginally

Description : In a spring mass system of mass m and stiffness k, the end of the spring are securely fixed and mass is attached to intermediate point of spring. The natural frequency of longitudinal ... is attached decreases D) Decreases as the distance from the bottom end where mass is attached decreases

Last Answer : B) Is minimum when mass is attached to mid point of the spring

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude , the natural frequency of longitudinal vibrations A) Increases B) Decreases C) Remain unchanged D) May be increase or decrease depending upon the value of the mass

Last Answer : C) Remain unchanged

Description : In the spring mass system if the mass of the system is doubled with spring stiffness halved, the natural frequency of longitudinal vibration A) Remained unchanged B) Is doubled C) Is halved D) Is quadruped

Last Answer : C) Is halved

Description : Natural frequency of the system is due to A) Free vibration B) Forced vibration C) Resonance D) Damping

Last Answer : A) Free vibration

Description : Resonance is a phenomenon when the frequency of external exciting force is A) Twice the natural frequency of the system B) Half the natural frequency of the system C) Same as the natural frequency of the system D) None of the above

Last Answer : C) Same as the natural frequency of the system

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and A natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. ( A )25.62 rad/sec ( B )20.78 rad/sec ( C )14.4 rad/sec ( D )15.33 rad/sec

Last Answer : ( A )25.62 rad/sec

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? C ( A )12.32 Hz (B) 4.10 Hz ( C )6.16 Hz (D)None of the above

Last Answer : ( C )6.16 Hz

Description : What is the effect on the undamped natural frequency of a single-degree-of- C freedom system if the mass of the system is increased? ( A ) The frequency will increase ( B ) The frequency will stay the same ( C ) The frequency will decrease ( D ) None of these

Last Answer : ( C ) The frequency will decrease

Description : While calculating the natural frequency of a spring-mass system, the effect of the B mass of the spring is accounted for by adding X times its value to the mass, where X is (A) 1/2 (B) 1/3 (C) 1/4 (D) 3/4

Last Answer : (B) 1/3

Description : In semi definite system, one of the natural frequencies is found to 15 Hz. The other natural frequency will be A. 15 Hz B. 0 Hz C. 30 Hz D. None of these

Last Answer : B. 0 Hz

Description : The external exciting frequency of the system having natural frequency 15 Hz is 10 Hz. The frequency ratio will be A. 1.500 B. 0.667 C. 0.150 D. None

Last Answer : B. 0.667

Description : When the frequency of external exciting force is equal to the natural frequency of the vibration of the system A. The amplitude of vibration is zero B. The amplitude of vibration is significantly small C. The amplitude of vibration is very large D. The amplitude does not change

Last Answer : C. The amplitude of vibration is very large

Description : A 10 Kg mass suspended by spring of stiffness 1000 N/m. the natural frequency of the system after giving excitation will be A. 0 Hz B. 1.59 Hz C. 2 Hz D. 15.9 Hz

Last Answer : B. 1.59 Hz

Description : The relative amplitudes of different degrees of freedom in a two-degree-of-freedom system depend on the natural frequency.

Last Answer : True

Description : When a two-degree-of-freedom system is subjected to a harmonic force, the system vibrates at the a. frequency of applied force b. smaller natural frequency c. larger natural frequency d. None of the above

Last Answer : a. frequency of applied force

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... , are a) 0.471 and 1.19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : The natural frequency of a spring-mass system on earth is ω n . The natural frequency of this system on the moon (g moon = g earth /6) is a) ω n b) 0.408ω n c) 0.204ω n d) 0.167ω n

Last Answer : a) ω n

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is a) 1/2 b) 1/3 c) 1/4 d) 3/4

Last Answer : b) 1/3

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations