During free vibration, different degrees of freedom oscillate with different phase angles.

1 Answer

Answer :

False

Related questions

Description : During free vibration, different degrees of freedom oscillate at different frequencies.

Last Answer : False

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the no of degree of freedom vibration.a. Three degree of freedom vibration b. Two degree of freedom vibration c. Single degree of freedom vibration d. None of the above

Last Answer : b. Two degree of freedom vibration

Description : The principal of mode vibration can be given by A) Two masses vibrate at Different frequency and in same phase B) Two masses vibrate at Different frequency and in Different phase C) Two masses vibrate at same frequency and in Different phase D) Two masses vibrate at same frequency and in same phase

Last Answer : D) Two masses vibrate at same frequency and in same phase

Description : The relative amplitudes of different degrees of freedom in a two-degree-of-freedom system depend on the natural frequency.

Last Answer : True

Description : In vibration isolation system, if ω/ωn, then the phase difference between the transmitted force and the disturbing force is A 0° B 90° C 180° D 270°

Last Answer : C 180°

Description : In vibration isolation system, if ω/ω n > 1, then the phase difference between the transmitted force and the disturbing force is A. 0° B. 90° C. 180° D. 270°

Last Answer : C. 180°

Description : When two masses vibrate at the same frequency and in phase, it is called a principal mode of vibration A. True B. False C. Does not depend on vibration D. None of the above

Last Answer : A. True

Description : In vibration isolation system, if ω/ω n , then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270°

Last Answer : c) 180°

Description : In vibration isolation system, if ω/ω n , then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270

Last Answer : c) 180°

Description : In vibration isolation system, if ω/ω n > 1, then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270°

Last Answer : c) 180°

Description : The number of degrees of freedom in simple spring mass system is A. Zero B. One C. Two D. Three

Last Answer : B. One

Description : The number of degrees of freedom of a vibrating system depends on a. number of masses b. number of masses and degrees of freedom of each mass c. number of coordinates used to describe the position of each mass d. None of the above

Last Answer : b. number of masses and degrees of freedom of each mass

Description : The number of degrees of freedom of a simple pendulum is: (a) 0 (b) 1 (c) 2

Last Answer : (b) 1

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have A Free vibration B Forced vibration C Damped vibration D None of the mentioned

Last Answer : C Damped vibration

Description : Which of the following is a type of free vibration? A Longitudinal vibrations B Transverse vibrations C Torsional vibrations D A, B and C

Last Answer : D A, B and C

Description : Natural frequency of the system is due to A Resonance B Forced Vibration C Damping D Free Vibration

Last Answer : D Free Vibration

Description : Increasing which of the following factor would result in increase of free torsional vibration? A. Radius of gyration B. Mass moment of inertia C. Polar moment of inertia D. Length

Last Answer : C. Polar moment of inertia

Description : Which of the following is a type of free vibration? A. Longitudinal vibrations B. Transverse vibrations C. Torsional vibrations D. A, B and C

Last Answer : D. A, B and C

Description : Natural frequency of the system is due to A) Free vibration B) Forced vibration C) Resonance D) Damping

Last Answer : A) Free vibration

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have ( A ) Free vibration ( B ) Forced vibration ( C ) Damped vibration ( D ) None of the mentioned

Last Answer : ( C ) Damped vibration

Description : Which of the following is a type of free vibration? ( A ) Longitudinal vibrations ( C ) Torsional vibrations D ( B ) Transverse vibrations ( D ) A, B and C

Last Answer : ( D ) A, B and C

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibrationd) under damped vibration

Last Answer : c) damped vibration

Description : Reduction in vibration amplitude after one complete cycle of single degree free vibration with dry friction damping is_____, if where F"= frictional force between mass and surface and k =stiffness of the system. a)4F/k a b) 2f/K C) 3F/k D)8F/k

Last Answer : a)4F/k

Description : f radius of gyration increases then the torsional free vibration increases. a) True b) False

Last Answer : b) False

Description : Increasing which of the following factor would result in increase of free torsional vibration? a) Radius of gyration b) Mass moment of inertiac) Polar moment of inertia d) Length

Last Answer : c) Polar moment of inertia

Description : Which of the following methods will give an incorrect relation of the frequency for free vibration? a) Equilibrium method b) Energy method c) Reyleigh’s method d) Klein’s method

Last Answer : d) Klein’s method

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibration d) under damped vibration

Last Answer : c) damped vibration

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibration d) none of the mentioned

Last Answer : c) damped vibration

Description : The motion completed during one time period is known as _______. A period of vibration B cycle C frequency D all of the above

Last Answer : B cycle

Description : During resonance A the Vibrations remains unaffected B no vibration occurs C low amplitude of vibration occurs D high amplitude of vibration occurs

Last Answer : D high amplitude of vibration occurs

Description : The motion completed during one time period is known as _______. A. period of vibration B. cycle C. frequency D. all of the above

Last Answer : B. cycle

Description : . The motion completed during one time period is known as _______. A. period of vibration B. cycle C. frequency D. all of the above

Last Answer : B. cycle

Description : The motion completed during one time period is known as _______. B ( A ) period of vibration ( B ) cycle ( C ) frequency ( D ) all of the above

Last Answer : ( B ) cycle

Description : During resonance A. High amplitude of vibration occurs B. Low amplitude of vibration occurs C. No vibration occurs D. Vibration remains unaffected

Last Answer : A. High amplitude of vibration occurs

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... Φ) C x = (A - Bt) e - ωt D x = X e - ξωt (cos ω d t + Φ)

Last Answer : A x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... ) C. x = (A - Bt) e - ωt D. x = X e - ξωt (cos ω d t + Φ

Last Answer : A. x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the A differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... (C)x = (A - Bt) e - ωt ( D )x = X e - ξωt (cos ω d t + Φ

Last Answer : ( A ) x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equati damped free vibrations having single degree of freedom. What will be the solution to this differ equation if the system is critically ... c. x = (A - Bt) e - ωt d. x = X e - ξωt (cos ω d t + Φ)

Last Answer : a. x = (A + Bt) e – ωt

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ * 1 point (A) Frictional resistance (B) Work done(C) Fluid pressure (D) Air pressure

Last Answer : (A) Frictional resistance

Description : The vibration in a vehicle is normally expressed in the terms of the ______________. (A) displacement (B) velocity (C) acceleration (D) none of the above

Last Answer : (C) acceleration

Description : In a two-rotor system, torsional vibration occurs only if the rotors are moving in the ______ direction. (A) same (B) opposite (C) either same or opposite (D) none of the above

Last Answer : (B) opposite

Description : The accelerometers are commonly used in vibration measurement due to their ___________. (A) small size and low sensitivity (B) the large size and high sensitivity (C) the large size and low sensitivity (D) small size and high sensitivity

Last Answer : (D) small size and high sensitivity

Description : Which of the following systems produce a vibration in the foundation? (A) Coupled machine(B) Uncoupled machine (C) Balanced machine (D) Unbalanced machine

Last Answer : (D) Unbalanced machine

Description : From the following, which one is a type of vibration measuring instrument? A Mechanical B Electrical C Magnetic D All of the above

Last Answer : D All of the above

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that A Its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration D Measurement of vibratory motion is without any reference point

Last Answer : C Its natural frequency is equal to the frequency of vibration

Description : In vibration isolation system, if ω/ωn < 2, then for all values of damping factor, the transmissibility will be A less than unity B equal to unity C greater than unity D zero

Last Answer : C greater than unity

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as A Damping factor B Damping coefficient C Logarithmic decrement D Magnification factor

Last Answer : D Magnification factor

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 25.62 rad/sec B 20.78 rad/sec C 14.4 rad/sec D 15.33 rad/sec

Last Answer : A 25.62 rad/sec

Description : The number of cycles described in one second is known as _______. A period of vibration B cycle C frequency D all of the above

Last Answer : C frequency

Description : In a two-rotor system, torsional vibration occurs only if the rotors are moving in the ______ direction. A. same B. opposite C. either same or opposite D. none of the above

Last Answer : B. opposite