As per Energy Method, the summation of kinetic energy and potential energy must D
be ________ which is same at all the times.
( A ) zero ( B ) minimum ( C ) maximum ( D ) constant

1 Answer

Answer :

( D ) constant

Related questions

Description : As per Energy Method, the summation of kinetic energy and potential energy must be ________ which is same at all the times. A. zero B. minimum C. maximum D. constant

Last Answer : D. constant

Description : As per Energy Method, the summation of kinetic energy and potential energy must be ________ which is same at all the times. (A) zero (B) minimum (C) maximum (D) constant

Last Answer : (D) constant

Description : As per Energy Method, the summation of kinetic energy and potential energy must be ________ which is same at all the times. A zeroB minimum C maximum D constant

Last Answer : D constant

Description : In energy method for finding frequency of the system A The sum of kinetic and potential energy is constant B The sum of kinetic and potential energy is zero C Frequency cannot be determined by energy method D None of the mentioned

Last Answer : A The sum of kinetic and potential energy is constant

Description : In Rayleigh’s method, the _____________ at the mean position is equal to the maximum potential energy (or strain energy) at the extreme position. (A) minimum kinetic energy (B) minimum potential energy (C) maximum kinetic energy (D) none of the above

Last Answer : (C) maximum kinetic energy

Description : According to which method, maximum kinetic energy at mean position is equal to maximum potential energy at extreme position? * 1 point (A) Energy method (B) Rayleigh's method (C) Equilibrium method (D) All of the above

Last Answer : (B) Rayleigh's method

Description : According to which method, maximum kinetic energy at mean position is equal to maximum potential energy at extreme position? A Energy method B Rayleigh’s method C Equilibrium method D All of the above

Last Answer : B Rayleigh’s method

Description : According to which method, maximum kinetic energy at mean position is equal to maximum potential energy at extreme position A Energy method B Rayleigh's method C Equilibrium method D None of the mentioned

Last Answer : B Rayleigh's method

Description : According to which method, maximum kinetic energy at mean position is equal to maximum potential energy at extreme position? A. Energy method B. Rayleigh's method C. Equilibrium method D. All of the above

Last Answer : C. Equilibrium method

Description : According to which method, maximum kinetic energy at mean position is equal to maximum potential energy at extreme position? A) Energy method B) Rayleigh's method C) Equilibrium method B) All of the above

Last Answer : B) Rayleigh's method

Description : According to which method, maximum kinetic energy at mean position is equal to maximum potential energy at extreme position? A) Energy methodB) Rayleigh's method C) Equilibrium method D) All of the above

Last Answer : B) Rayleigh's method

Description : According to which method, maximum kinetic energy at mean position is equal to B maximum potential energy at extreme position? (A) Energy method (B) Rayleigh’s method (C) Equilibrium method (D) All of the above

Last Answer : (B) Rayleigh’s method

Description : According to which method, maximum kinetic energy at mean position is equal to maximum potential energy at extreme position? a. Energy method b. Rayleigh's method c. Equilibrium method d. All of the above

Last Answer : b. Rayleigh's method

Description : The speed at which the shaft runs so that the additional deflection of the shaft from the axis of rotation becomes ___________, is known as critical or whirling speed. (A) zero (B) minimum (C) maximum (D) infinite

Last Answer : (D) infinite

Description : What is meant by node point? A. The point at which amplitude of vibration is maximum B. The point at which amplitude of vibration is minimum C. The point at which amplitude of vibration is zero D. None of the above

Last Answer : C. The point at which amplitude of vibration is zero

Description : If the mass of the constraint is negligible then what is the kinetic energy of the system? a) 0 b) Half the value c) Double the value d) Infinite

Last Answer : a) 0

Description : If a mass whose moment of inertia is Ic/3 is placed at the free end and the constraint is assumed to be of negligible mass, then the kinetic energy is ______ a) 1/6 Icω 2 b) 1/2Icω 2 c) 1/3Icω 2 d) 1/12Icω 2

Last Answer : a) 1/6 Icω 2

Description : Which of the following statements is/are true? A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B. Shaft vibrates with maximum frequency when rotors ... C. Zero node behavior is observed in rotors rotating in opposite direction D. All of the above

Last Answer : A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : Which of the following statements is/are true? A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B) Shaft vibrates with maximum frequency when rotors ... C) Zero node behavior is observed in rotors rotating in opposite direction D) All of the above

Last Answer : A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : Which of the following statements is/are true? a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction b. Shaft vibrates with maximum frequency when rotors ... c. Zero node behavior is observed in rotors rotating in opposite direction d. All of the above

Last Answer : a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : A particle in simple Harmonic Motion while passing through mean position will have a.Maximum kinetic energy and minimum potential energy b.Average kinetic energy and average potential energy c. ... energy d.Maximum kinetic energy and maximum e.Minimum kinetic energy and minimum potential energy

Last Answer : a. Maximum kinetic energy and minimum potential energy

Description : A particle in SHM while passing through mean position will have a.maximum kinetic energy and maximum potential energy b.107 dynes c.maximum kinetic energy and minimum potential energy d.average kinetic energy and average potential energy. e.minimum kinetic energy and maximum potential energy

Last Answer : c. maximum kinetic energy and minimum potential energy

Description : A long thread suspended from a fixed point has a small mass swinging to and fro at its lower end. Then, 1. the potential energy of the mass is minimum in the middle of the swing 2. the kinetic energy is maximum in the middle of ... /are correct? (a) 1 only (b) 1 and 2 (c) 2 and 4 (d) 1, 2, 3 and 4

Last Answer : Ans:(b)

Description : Bernoulli's principle states that, for streamline motion of an incompressible non-viscous fluid: A. the pressure at any part + the kinetic energy per unit volume = constant B. the kinetic ... + the kinetic energy per unit volume + the potential energy per unit volume = constant

Last Answer : the pressure at any part + the kinetic energy per unit volume + the potential energy per unit volume = constant

Description : Dynamic vibration absorber is suitable for A varying speed machines B constant speed machines C Zero speed range machines D None of the mentioned

Last Answer : B constant speed machines

Description : Dynamic vibration absorber is suitable for A) Constant speed machine B) Varying speed machine C) zero speed machine D) None of the above

Last Answer : A) Constant speed machine

Description : Dynamic vibration absorber is suitable for A. Constant speed machines B. Varying speed machines C. Zero speed range machines D. None of the above

Last Answer : A. Constant speed machines

Description : If Ic = 125 Kg-m 2 and ω= 20 rad/s, calculate the kinetic of the constraint. a) 8333 J b) 7333 J c) 6333 J d) 9333 J

Last Answer : a) 8333 J

Description : A node means a section where the amplitude of vibration is A. Maximum B. Half of the maximum C. Zero D. 1⁄4 of the maximum

Last Answer : C. Zero

Description : In a spring mass system of mass m and stiffness k, the end of the spring are securely fixed and mass is attached to intermediate point of spring. The natural frequency of longitudinal ... is attached decreases D) Decreases as the distance from the bottom end where mass is attached decreases

Last Answer : B) Is minimum when mass is attached to mid point of the spring

Description : The advantage of critical damping is A. That vibrating body come to rest in smallest possible time B. There is no vibration C. That amplitude of vibration is maximum D. The amplitude of vibration is minimum

Last Answer : A. That vibrating body come to rest in smallest possible time

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ * 1 point (A) Frictional resistance (B) Work done(C) Fluid pressure (D) Air pressure

Last Answer : (A) Frictional resistance

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ a) Frictional resistance b) Work done c) Fluid pressure d) Air pressure

Last Answer : a) Frictional resistance

Description : The coefficient of fluctuation of energy of flywheel is 1. ratio of maximum fluctuation of energy to work done per cycle 2. ratio of to work done per cycle to maximum fluctuation of energy ... minimum kinetic energy during the cycle 4. ratio of maximum and minimum kinetic energy during the cycle

Last Answer : 1. ratio of maximum fluctuation of energy to work done per cycle

Description : The coefficient of fluctuation of energy of flywheel is, (A) Ratio of maximum fluctuation of energy to work done per cycle (B) Ratio of to work done per cycle to maximum fluctuation of ... minimum kinetic energy during the cycle (D) Ratio of maximum and minimum kinetic energy during the cycle

Last Answer : (A) Ratio of maximum fluctuation of energy to work done per cycle

Description : ________ energy is the total kinetic and potential energy of the particles in an object.?

Last Answer : In microscopic particles it's called internal energy. In macroscopic particles it's called thermodynamic energy.

Description : In the production of wave energy ________ form of energy is used. a) Potential energy b) Kinetic energy c) Solar energy d) Wind energy

Last Answer : wind energy

Description : The continuity equation in ideal fluid flow states that (A) Net rate of inflow into any small volume must be zero (B) Energy is not constant along a streamline (C) Energy is constant along a streamline (D) There exists a velocity potential

Last Answer : (A) Net rate of inflow into any small volume must be zero

Description : The work done by the string of a simple pendulum during one complete oscillation is equal to (1) Total energy of the pendulum (2) Kinetic energy of the pendulum (3) Potential energy of the pendulum (4) Zero

Last Answer : (4) Zero Explanation: Work done by the string of the simple pendulum during one complete oscillation is zero. Tension in the string exactly cancels the component parallel to the string. This leaves a net restoring force back toward the equilibrium position as equal to zero.

Description : The work done by the string of a simple pendulum during one complete oscillation is equal to (1) Total energy of the pendulum (2) Kinetic energy of the pendulum (3) Potential energy of the pendulum (4) Zero

Last Answer : Zero

Description : The statement that the sum of the kinetic and potential energies of a particle in the earth's gravitational field is constant is known as a.Principle of conservation of mechanical energy b.Law of gravitation c.Newton's law d.Principle of conservation of momentum e.Law of nature

Last Answer : a. Principle of conservation of mechanical energy

Description : The relationship between kinetic energy and the potential energy of a swinging pendulum bob is one of the following. Is it: w) kinetic energy is greater than potential energy x) kinetic ... kinetic energy is equal to potential energy z) kinetic energy plus potential energy equals a constant  

Last Answer : ANSWER: Z -- KINETIC ENERGY PLUS POTENTIAL ENERGY EQUALS A CONSTANT 

Description : An increase in the mass moment of inertia results in ________ in vibration frequency. A. increase B. decrease C. unchanged D. none of the above

Last Answer : B. decrease

Description : In vibrometer, the relative motion between the mass and vibrating body is converted into proportional ________. (A) current (B) voltage (C) resistance (D) ampere

Last Answer : (B) voltage

Description : Equilibrium Method is in accordance with which of the following principle? * 1 point (A) Taylor's principle (B) D'Alembert's principle (C) Energy conservation principle (D) None of the above

Last Answer : (B) D'Alembert's principle

Description : Equilibrium Method is in accordance with which of the following principle? A. Taylor's principle B. D'Alembert's principle C. Energy conservation principle D. None of the above

Last Answer : B. D'Alembert's principle

Description : Equilibrium Method is in accordance with which of the following principle? (A) Taylor's principle (B) D'Alembert's principle (C) Energy conservation principle (D) None of the above

Last Answer : (B) D'Alembert's principle

Description : Which of the following methods will give an incorrect relation of the frequency for free vibration? a) Equilibrium method b) Energy method c) Reyleigh’s method d) Klein’s method

Last Answer : d) Klein’s method

Description : um of the elements of row i equal to shunt admittances connected to bus i. If this summation is zero, indicates there is no a) shunt admittance b) mutual coupling c) both 1 and 2 d) none of the above

Last Answer : c) both 1 and 2