According to the untuned dry fraction damper amplitude reduction will be
A) Lesser if lesser amount of energy dissipated
B) Greater if greater amount of energy dissipated
C) Greater if lesser amount of energy dissipated
D) Lesser if greater amount of energy dissipated

1 Answer

Answer :

B) Greater if greater amount of energy dissipated

Related questions

Description : Untuned viscous damper ( houdaille Damper) is used with variable speed machine being control by ratio can be given by A) (damper inertia) / (main system inertia) B) (main system inertia) / (damper inertia) ... X damper inertia) / (main system inertia) D) (2 X main system inertia) / (damper inertia)

Last Answer : A) (damper inertia) / (main system inertia)

Description : Untuned viscous damper ( houdaille Damper) is used with variable speed machine being control by ratio can be given by A) (damper inertia) / (main system inertia) B) (main system inertia) / (damper inertia) ... X damper inertia) / (main system inertia) D) (2 X main system inertia) / (damper inertia)

Last Answer : A) (damper inertia) / (main system inertia)

Description : Following are the untuned vibration dampers A. Lanchester Damper B. Houdaille Damper C. Both (A) and (B) D. None of these

Last Answer : C. Both (A) and (B)

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ * 1 point (A) Frictional resistance (B) Work done(C) Fluid pressure (D) Air pressure

Last Answer : (A) Frictional resistance

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ a) Frictional resistance b) Work done c) Fluid pressure d) Air pressure

Last Answer : a) Frictional resistance

Description : Reduction in vibration amplitude after one complete cycle of single degree free vibration with dry friction damping is_____, if where F"= frictional force between mass and surface and k =stiffness of the system. a)4F/k a b) 2f/K C) 3F/k D)8F/k

Last Answer : a)4F/k

Description : When ≠ , the absorber is known as A. Untuned vibration absorber B. Tuned vibration absorber C. Both of above D. None of these

Last Answer : A. Untuned vibration absorber

Description : When = , the absorber is known as A. Untuned vibration absorber B. Tuned vibration absorber C. Both of above D. None of these

Last Answer : B. Tuned vibration absorber

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have A Free vibration B Forced vibration C Damped vibration D None of the mentioned

Last Answer : C Damped vibration

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have ( A ) Free vibration ( B ) Forced vibration ( C ) Damped vibration ( D ) None of the mentioned

Last Answer : ( C ) Damped vibration

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibrationd) under damped vibration

Last Answer : c) damped vibration

Description : Logarithmic decrement is defined as the ____________ of the amplitude reduction factor. (A) reciprocal (B) logarithm (C) natural logarithm (D) all of the above

Last Answer : (C) natural logarithm

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibration d) under damped vibration

Last Answer : c) damped vibration

Description : When there is a reduction in amplitude over every cycle of vibration, then the body is said to have a) free vibration b) forced vibration c) damped vibration d) none of the mentioned

Last Answer : c) damped vibration

Description : Consider the steady-state absolute amplitude equation shown below, if ω / ω n = √2 then amplitude ratio (X/Y) =? (X/Y) = √{1 + [ 2ξ (ω/ω n )] 2 } / √{[1 – (ω/ω n ) 2 ] 2 + {2ξ (ω/ω n ) 2 } A. 0 B. 1 C. less than 1 D. greater than 1

Last Answer : B. 1

Description : In Fullarton Tachometer, a thin strip with a ______ is attached at one of its ends. (A) mass (B) spring (C) damper (D) shaft

Last Answer : (A) mass

Description : A vehicle suspension system consists of a spring and a damper. Stiffness of spring is 3.5 KN/m and damping constant of damper is 400Ns/m. If mass is 50 kg, then damping factor is A 0.606 B 0.10 C 0.666 D 0.471

Last Answer : D 0.471

Description : Determine the viscous damping coefficient if damper offers resistance 0.05N at constant velocity 0.04m/sec A 0.8N-sec/m B 1.5N-sec/m C 2.5N-sec/m D 1.25N-sec/m

Last Answer : D 1.25N-sec/m

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor? A. 0B. 1/2 C. 1/4 D. Infinity

Last Answer : D. Infinity

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor? A. 0 B. 0.5 C. 0.25 D. Infinite

Last Answer : D. Infinite

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... , are a) 0.471 and 1.19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor?(A) 0 (B) 0.5 (C) 0.25 (D) Infinite

Last Answer : (D) Infinite

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor? a) 0 b) 1/2 c) 1/4 d) Infinity

Last Answer : d) Infinity

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... .19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz d) 0.666 and 8.50 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : When a rigid body is suspended vertically and it oscillates with a small amplitude under the action of the force of gravity, the body is known as * 1 point (A) simple pendulum (B) torsional pendulum (C) compound pendulum (D) second’s pendulum

Last Answer : (C) compound pendulum

Description : Which of the following instruments measure the amplitude of a vibrating body? (A) Vibrometers (B) Seismometer (C) Both (a) and (b) (D) None of these

Last Answer : (C) Both (a) and (b)

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. A equal to B directly proportional to C inversely proportional to D independent of

Last Answer : C inversely proportional to

Description : In under damped vibrating system, if x 1 and x 2 are the successive values of the amplitude on the same side of the mean position, then the logarithmic decrement is equal to A x 1 /x 2 B log (x 1 /x 2 ) C loge (x 1 /x 2 ) D log (x 1 .x 2 )

Last Answer : C loge (x 1 /x 2 )

Description : What is meant by node point? A. The point at which amplitude of vibration is maximum B. The point at which amplitude of vibration is minimum C. The point at which amplitude of vibration is zero D. None of the above

Last Answer : C. The point at which amplitude of vibration is zero

Description : In above numerical what will be the frequency corresponding to the peak amplitude A 14.18rad/sec B 24.13rad/sec C 20.22rad/sec D 22.32rad/sec

Last Answer : A 14.18rad/sec

Description : A vibrating system having mass 1kg, a spring of stiffness 1000N/m and damping factor of 0.632 and it is put to harmonic excitation of 10N. Find the amplitude at resonance. A 0.079 B 7.9C 0.056 D 0.00791

Last Answer : D 0.00791

Description : Calculate logarithmic decrement if the amplitude of the vibrating body reduces to half in two cycles A 0.346 B 0.693 C 0.301 D 0.150

Last Answer : A 0.346

Description : During resonance A the Vibrations remains unaffected B no vibration occurs C low amplitude of vibration occurs D high amplitude of vibration occurs

Last Answer : D high amplitude of vibration occurs

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is __________ damping coefficient. A. Equal to B. Directly proportional to C. Inversely proportional toD. Independent of

Last Answer : C. Inversely proportional to

Description : A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of √3k/m , the ratio of the amplitude of steady state response to the static deflection of the spring is __________ A. 0.2 B. 0.5 C. 0.8 D. None of the above

Last Answer : B. 0.5

Description : When a rigid body is suspended vertically and it oscillates with a small amplitude under the action of the force of gravity, the body is known as A. simple pendulum B. torsional pendulum C. compound pendulum D. second’s pendulum

Last Answer : C. compound pendulum

Description : In damped free vibrations, which parameters indicate vibrations? A) Natural frequency B) Rate of decay of amplitude C) Both a. and b. D) None of the above

Last Answer : C) Both a. and b.

Description : Transmissibility in a support excitation system is defined by A) Ratio of absolute amplitude of the mass to the excitation amplitude of the support B) Reciprocal of (a) C) Ratio of the ... the foundation, to the equivalent force corresponding to maximum displacement excitation D) None of the above

Last Answer : B) Reciprocal of (a)

Description : If frequency of excitation of a forced vibration system with negligible damping is very close to natural frequency of the system, then the system will A) Execute harmonic motion of large amplitude B) Beat with a very high peak amplitude C) Perform aperiodic motion D) None of the above

Last Answer : A) Execute harmonic motion of large amplitude

Description : If ωmax is the frequency at which the peak amplitude occurs and ωn is the natural frequency of the system then In a forced vibration system with damping, the higher the damping, A) More will be ... and ωmax is independent of damping in this system D) The difference between ωn and ωmax will be zero

Last Answer : A) More will be the difference between ωn and ωmax

Description : In the case of steady state forced vibration at a resonance, the amplitude of vibration is A) Inversely proportional to damping coefficient B) Inversely proportional to damping ratio C) Inversely proportional to resonant frequency D) Directly proportional to resonant frequency

Last Answer : B) Inversely proportional to damping ratio

Description : In which type of vibrations, amplitude of vibration goes on decreasing every cycle? A) Damped vibrations B) Undamped vibrations C) Both a. and b. D) None of the above

Last Answer : A) Damped vibrations

Description : If the amplitude of harmonic motion is large, its frequency A) Will always be high B) Will always be less C) Can have any value D) Will be zero

Last Answer : C) Can have any value

Description : In under damped vibrating system, if x 1 and x 2 are the successive values of the C amplitude on the same side of the mean position, then the logarithmic decrement is equal to ( A ) x 1 /x 2 ( B ) log (x 1 /x 2 ) ( C ) loge (x 1 /x 2 ) ( D ) log (x 1 .x 2 )

Last Answer : ( C ) loge (x 1 /x 2 )

Description : In two degree of freedom system, the numbers of amplitude observed are A. OneB. Two C. Three D. None

Last Answer : B. Two