If the damper is not provided and the system is in resonance, which of the following is
the correct isolation factor?
a) 0
b) 1/2
c) 1/4
d) Infinity

1 Answer

Answer :

d) Infinity

Related questions

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor? A. 0B. 1/2 C. 1/4 D. Infinity

Last Answer : D. Infinity

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor? A. 0 B. 0.5 C. 0.25 D. Infinite

Last Answer : D. Infinite

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor?(A) 0 (B) 0.5 (C) 0.25 (D) Infinite

Last Answer : (D) Infinite

Description : The response of an Undamped system under resonance will be a. very large b. infinity c. zero

Last Answer : b. infinity

Description : A vehicle suspension system consists of a spring and a damper. Stiffness of spring is 3.5 KN/m and damping constant of damper is 400Ns/m. If mass is 50 kg, then damping factor is A 0.606 B 0.10 C 0.666 D 0.471

Last Answer : D 0.471

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... , are a) 0.471 and 1.19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... .19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz d) 0.666 and 8.50 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : A vibrating system having mass 1kg, a spring of stiffness 1000N/m and damping factor of 0.632 and it is put to harmonic excitation of 10N. Find the amplitude at resonance. A 0.079 B 7.9C 0.056 D 0.00791

Last Answer : D 0.00791

Description : Which of the following is correct regarding isolation factor? a) Dimensionless quantity b) Has Newton as its unit c) Has joule as its Unit d) Has Hz as its unit

Last Answer : a) Dimensionless quantity

Description : In which of the cases the factor c = 0? a) When there is damping b) No damping c) Resonance d) c is never 0

Last Answer : b) No damping

Description : In vibration isolation system, if ω/ωn < 2, then for all values of damping factor, the transmissibility will be A less than unity B equal to unity C greater than unity D zero

Last Answer : C greater than unity

Description : In vibration isolation system, the transmissibility will be equal to unity, for all values of damping factor, if ω/ωn is A. Equal to 1 B. Equal to √2 C. Less than √2 D. Greater than √2

Last Answer : B. Equal to √2

Description : In vibration isolation system, if ω/ω n < 2, then for all values of damping factor, the transmissibility will be a) less than unity b) equal to unity c) greater than unity d) zero

Last Answer : c) greater than unity

Description : In vibration isolation system, if ω/ω n < 2, then for all values of damping factor, the transmissibility will be a) less than unity b) equal to unity c) greater than unity d) zero

Last Answer : c) greater than unity

Description : n vibration isolation system, if ω/ω n is less than √2 , then for all values of the damping factor, the transmissibility will be a) less than unity b) equal to unity c) greater than unity d) zero

Last Answer : c) greater than unity

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : The ratio of the force transmitted to the force applied is known as the ____________ of the spring support. A. isolation factor B. transmissibility ratio C. both A and B D. none of the above

Last Answer : C. both A and B

Description : The ratio of the force transmitted to the force applied is known as the ____________ of the spring support. (A) isolation factor (B) transmissibility ratio (C) both A and B (D) none of the above

Last Answer : (C) both A and B

Description : Which of the following is a unit of isolation factor? (A) Newton (B) Joule (C) Hz (D) None of the above

Last Answer : (D) None of the above

Description : Isolation factor is twice the transmissibility ratio. a) True b) False

Last Answer : b) False

Description : If isolation factor is negative, then what is the phase difference between transmitted and disturbing force? a) 180° b) 90° c) 450° d) 360°

Last Answer : a) 180°

Description : Determine the viscous damping coefficient if damper offers resistance 0.05N at constant velocity 0.04m/sec A 0.8N-sec/m B 1.5N-sec/m C 2.5N-sec/m D 1.25N-sec/m

Last Answer : D 1.25N-sec/m

Description : Untuned viscous damper ( houdaille Damper) is used with variable speed machine being control by ratio can be given by A) (damper inertia) / (main system inertia) B) (main system inertia) / (damper inertia) ... X damper inertia) / (main system inertia) D) (2 X main system inertia) / (damper inertia)

Last Answer : A) (damper inertia) / (main system inertia)

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Untuned viscous damper ( houdaille Damper) is used with variable speed machine being control by ratio can be given by A) (damper inertia) / (main system inertia) B) (main system inertia) / (damper inertia) ... X damper inertia) / (main system inertia) D) (2 X main system inertia) / (damper inertia)

Last Answer : A) (damper inertia) / (main system inertia)

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : In Fullarton Tachometer, a thin strip with a ______ is attached at one of its ends. (A) mass (B) spring (C) damper (D) shaft

Last Answer : (A) mass

Description : According to the untuned dry fraction damper amplitude reduction will be A) Lesser if lesser amount of energy dissipated B) Greater if greater amount of energy dissipated C) Greater if lesser amount of energy dissipated D) Lesser if greater amount of energy dissipated

Last Answer : B) Greater if greater amount of energy dissipated

Description : Following are the untuned vibration dampers A. Lanchester Damper B. Houdaille Damper C. Both (A) and (B) D. None of these

Last Answer : C. Both (A) and (B)

Description : At resonance the phase angle is equal to A 0 0B 180 0 C 120 0 D 90 0

Last Answer : D 90 0

Description : In vibration isolation system, if ω/ωn, then the phase difference between the transmitted force and the disturbing force is A 0° B 90° C 180° D 270°

Last Answer : C 180°

Description : In vibration isolation system, if ω/ω n > 1, then the phase difference between the transmitted force and the disturbing force is A. 0° B. 90° C. 180° D. 270°

Last Answer : C. 180°

Description : The condition to be fulfilled in the design of spring for vibration isolation of a system where excitation is due to a rotating unbalance is A) ω ωn D) ω >> ωn

Last Answer : A) ω

Description : In vibration isolation system, if ω/ω n , then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270°

Last Answer : c) 180°

Description : In vibration isolation system, if ω/ω n , then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270

Last Answer : c) 180°

Description : In vibration isolation system, if ω/ω n > 1, then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270°

Last Answer : c) 180°

Description : The first critical speed of an automobile running on a sinusoidal road is calculated by (modeling it as a single degree of freedom system) A Resonance B Approximation C Superposition D Rayleigh quotient

Last Answer : A Resonance

Description : Natural frequency of the system is due to A Resonance B Forced Vibration C Damping D Free Vibration

Last Answer : D Free Vibration

Description : Natural frequency of the system is due to A) Free vibration B) Forced vibration C) Resonance D) Damping

Last Answer : A) Free vibration

Description : Resonance is a phenomenon when the frequency of external exciting force is A) Twice the natural frequency of the system B) Half the natural frequency of the system C) Same as the natural frequency of the system D) None of the above

Last Answer : C) Same as the natural frequency of the system

Description : The first critical speed of an automobile running on a sinusoidal road is calculated by (modeling it as a single degree of freedom system) a) Resonance b) Approximation c) Superposition d) Rayleigh quotient

Last Answer : a) Resonance

Description : In the graph shown below, the region in which frequency ratio (ω/ω n ) > √2 is known as____ A. Amplification region B. Isolation region C. Spring controlled region D. None of the above

Last Answer : B. Isolation region

Description : where springs of low damping are required for the purpose of vibration isolation, it will be most desirable to use A) Metallic springs B) Rubber pad C) Air springs D) Neoprene pads

Last Answer : A) Metallic springs

Description : For an under damped harmonic oscillator, resonance A Occurs when excitation frequency is greater than undamped natural frequency B Occurs when excitation frequency is less than undamped natural frequency C Occurs when excitation frequency is equal to undamped natural frequency D Never occurs

Last Answer : C Occurs when excitation frequency is equal to undamped natural frequency

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is _____________ damping coefficient. A equal to B directly proportional to C inversely proportional to D independent of

Last Answer : C inversely proportional to

Description : During resonance A the Vibrations remains unaffected B no vibration occurs C low amplitude of vibration occurs D high amplitude of vibration occurs

Last Answer : D high amplitude of vibration occurs

Description : The reciprocal of the interval of time by a vibrating body to complete a cycle is called A Period B Frequency C Resonance D None of the mentioned

Last Answer : B Frequency

Description : Time taken to complete one cycle is known as A Resonance B Frequency C Period D Damping

Last Answer : C Period

Description : In steady state forced vibrations, the amplitude of vibrations at resonance is __________ damping coefficient. A. Equal to B. Directly proportional to C. Inversely proportional toD. Independent of

Last Answer : C. Inversely proportional to