Untuned viscous damper ( houdaille Damper) is used with variable speed machine being control
by ratio can be given by
A) (damper inertia) / (main system inertia)
B) (main system inertia) / (damper inertia)
C) (2 X damper inertia) / (main system inertia)
D) (2 X main system inertia) / (damper inertia)

1 Answer

Answer :

A) (damper inertia) / (main system inertia)

Related questions

Description : Untuned viscous damper ( houdaille Damper) is used with variable speed machine being control by ratio can be given by A) (damper inertia) / (main system inertia) B) (main system inertia) / (damper inertia) ... X damper inertia) / (main system inertia) D) (2 X main system inertia) / (damper inertia)

Last Answer : A) (damper inertia) / (main system inertia)

Description : Following are the untuned vibration dampers A. Lanchester Damper B. Houdaille Damper C. Both (A) and (B) D. None of these

Last Answer : C. Both (A) and (B)

Description : According to the untuned dry fraction damper amplitude reduction will be A) Lesser if lesser amount of energy dissipated B) Greater if greater amount of energy dissipated C) Greater if lesser amount of energy dissipated D) Lesser if greater amount of energy dissipated

Last Answer : B) Greater if greater amount of energy dissipated

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : Determine the viscous damping coefficient if damper offers resistance 0.05N at constant velocity 0.04m/sec A 0.8N-sec/m B 1.5N-sec/m C 2.5N-sec/m D 1.25N-sec/m

Last Answer : D 1.25N-sec/m

Description : When ≠ , the absorber is known as A. Untuned vibration absorber B. Tuned vibration absorber C. Both of above D. None of these

Last Answer : A. Untuned vibration absorber

Description : When = , the absorber is known as A. Untuned vibration absorber B. Tuned vibration absorber C. Both of above D. None of these

Last Answer : B. Tuned vibration absorber

Description : A vehicle suspension system consists of a spring and a damper. Stiffness of spring is 3.5 KN/m and damping constant of damper is 400Ns/m. If mass is 50 kg, then damping factor is A 0.606 B 0.10 C 0.666 D 0.471

Last Answer : D 0.471

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor? A. 0B. 1/2 C. 1/4 D. Infinity

Last Answer : D. Infinity

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor? A. 0 B. 0.5 C. 0.25 D. Infinite

Last Answer : D. Infinite

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... , are a) 0.471 and 1.19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor?(A) 0 (B) 0.5 (C) 0.25 (D) Infinite

Last Answer : (D) Infinite

Description : If the damper is not provided and the system is in resonance, which of the following is the correct isolation factor? a) 0 b) 1/2 c) 1/4 d) Infinity

Last Answer : d) Infinity

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... .19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz d) 0.666 and 8.50 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : In Fullarton Tachometer, a thin strip with a ______ is attached at one of its ends. (A) mass (B) spring (C) damper (D) shaft

Last Answer : (A) mass

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + s/m X x = 0 If the roots of this equation are real, then the system will be A. over damped B. under damped C. critically damped D. none of the mentioned

Last Answer : A. over damped

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + k/m X x = 0 If the roots of this equation are real, then the system will be a) over damped b) under damped c) critically damped d) none of the mentioned Ans:a

Last Answer : a) over damped

Description : The equivalent viscous damping coefficient Ceq for coulomb damping is given by A) 4F/πωx B) 4πF/ωx C) πωx/4F D) ωx/4Πf

Last Answer : A) 4F/πωx

Description : When parts of a vibrating system slide on a dry surface, the damping is A. Viscous. B. Coulomb C. Structural D. Eddy current

Last Answer : B. Coulomb

Description : When a system vibrates in a fluid medium, the damping is (a) viscous (b) Coulomb (c) solid

Last Answer : (a) viscous

Description : A simple pendulum is found to vibrate at a frequency of 0.5Hz in vacuum and0.45 Hz in a viscous fluid medium. Find the damping factor. 0.5122 (B) 0.9272 (C) 0.4359 (D) 0.2568

Last Answer : (C) 0.4359

Description : Eddy current damping is an example of _____ A Coulomb damping B Hysteresis damping C Viscous damping D Dry friction damping

Last Answer : C Viscous damping

Description : A simple pendulum is found to vibrate at a frequency of 0.5Hz in vacuum and 0.45Hz in a viscous fluid medium. Find the damping factor. A 0.5122 B 0.9237 C 0.4359 D 0.2568

Last Answer : C 0.4359

Description : The unit of the viscous damping coefficient is A N-m/sec B m/N-sec C N-sec-m D N-sec/m

Last Answer : D N-sec/m

Description : Eddy current damping is an example of _____A. Coulomb damping B. Hysteresis damping C. Viscous damping D. Dry friction damping

Last Answer : C. Viscous damping

Description : Eddy current damping is an example of _____ A) Coulomb damping B) Hysteresis damping C) Viscous damping D) Dry friction damping

Last Answer : C) Viscous damping

Description : Which of the following relations is true for viscous damping? A) Force α relative displacement B) Force α relative velocity C) Force α (1 / relative velocity) D) None of the above

Last Answer : B) Force α relative velocity

Description : In case of viscous damping the frequency of damped vibration is A) Equal to that of undamped vibrations B) Less than that of undamped vibrations C) Greater than that of undamped vibrations D) Independent than that of undamped vibrations

Last Answer : B) Less than that of undamped vibrations

Description : The units of viscous damping coefficient is A) N-m/sec B) m/N-sec C) N-sec/m D) N-m-sec

Last Answer : C) N-sec/m

Description : Following are the types of damping A. Viscous Damping B. Coulomb Damping C. Hysteresis Damping D. All the above

Last Answer : D. All the above

Description : Eddy current damping is an example of _____ a. Coulomb damping b. Hysteresis damping c. Viscous damping d. Dry friction damping

Last Answer : c. Viscous damping

Description : Which of the following relations is true for viscous damping? a. Force α relative displacement b. Force α relative velocity c. Force α (1 / relative velocity) d. None of the above

Last Answer : b. Force α relative velocity

Description : Fluid resistance causes damping which is known as ______ a) Resistance damping b) Fluid dampingc) Viscous damping d) Liquid damping

Last Answer : c) Viscous damping

Description : For a two-rotor system, the length of one shaft (A) is twice the other (B), then what is the relation between the mass moment of inertia of the shafts. A 2I(A) = I(B) B I(A) = 2I(B) C I(A) = I(B) D 2I(A) = 3I(B)

Last Answer : A 2I(A) = I(B)

Description : If the polar moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? A. Increases 4 times B. Increases 2 times C. Decreases 4 times D. Decreases 2 times

Last Answer : B. Increases 2 times

Description : The equation of motion for spring mass system includes A. Inertia Force B. Spring Force C. Both D. Gravitational force

Last Answer : C. Both

Description : Calculate the Polar moment of inertia in m 4 of a single motor system from the following data: C = 8 GN/m 2 , L=9m, I = 600 Kg-m 2 , f=10 Hz a) 0.00027b) 0.00032 c) 0.00045 d) 0.00078

Last Answer : a) 0.00027

Description : f the length inertia is decreased to nine times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 3 times b) Increases 9 times c) Decreases 9 times d) Decreases 3 times

Last Answer : a) Increases 3 times

Description : If the mass moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 4 times b) Increases 2 times c) Decreases 4 times d) Decreases 2 times

Last Answer : d) Decreases 2 times

Description : If the polar moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 4 times b) Increases 2 times c) Decreases 4 times d) Decreases 2 times

Last Answer : b) Increases 2 times

Description : Free torsional vibrations of a single motor system increases with increase in polar moment of inertia. a) True b) False

Last Answer : b) False

Description : Which of the following relation is correct regarding free torsional vibrations of a single motor system? a) Independent of modulus of rigidity b) Independent of polar moment of inertia c) Dependent on mass moment of inertia d) Independent of length of shaft

Last Answer : c) Dependent on mass moment of inertia

Description : Often an unbalance of forces is produced in rotary or reciprocating machinery due to the ______ * 1 point (A) Centripetal forces (B) Centrifugal forces (C) Friction forces (D) Inertia forces

Last Answer : (D) Inertia forces

Description : Increasing which of the following factor would result in increase of free torsional vibration? A. Radius of gyration B. Mass moment of inertia C. Polar moment of inertia D. Length

Last Answer : C. Polar moment of inertia

Description : An increase in the mass moment of inertia results in ________ in vibration frequency. A. increase B. decrease C. unchanged D. none of the above

Last Answer : B. decrease

Description : Which formula is used to calculate mass moment of inertia (I G ) of a circular rim about the axis through centre of gravity? a. mr 2 /2b. mr 2 /12 c. mr 2 /4 d. mr 2

Last Answer : d. mr 2

Description : Increasing which of the following factor would result in increase of free torsional vibration? a) Radius of gyration b) Mass moment of inertiac) Polar moment of inertia d) Length

Last Answer : c) Polar moment of inertia