If the amplitude of harmonic motion is large, its frequency
A) Will always be high
B) Will always be less
C) Can have any value
D) Will be zero

1 Answer

Answer :

C) Can have any value

Related questions

Description : If frequency of excitation of a forced vibration system with negligible damping is very close to natural frequency of the system, then the system will A) Execute harmonic motion of large amplitude B) Beat with a very high peak amplitude C) Perform aperiodic motion D) None of the above

Last Answer : A) Execute harmonic motion of large amplitude

Description : When a body moves with simple harmonic motion, the product of its periodic time and frequency is equal to A. Zero B. One C. π/2 D. 2π

Last Answer : B. One

Description : A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of √3k/m , the ratio of the amplitude of steady state response to the static deflection of the spring is __________ A. 0.2 B. 0.5 C. 0.8 D. None of the above

Last Answer : B. 0.5

Description : The resultant motion of two Simple Harmonic Motions will be A. Simple Harmonic MotionB. Periodic Motion C. Projectile Motion D. Zero

Last Answer : A. Simple Harmonic Motion

Description : When the frequency of external exciting force is equal to the natural frequency of the vibration of the system A. The amplitude of vibration is zero B. The amplitude of vibration is significantly small C. The amplitude of vibration is very large D. The amplitude does not change

Last Answer : C. The amplitude of vibration is very large

Description : The motion of a system executing harmonic motion with one natural frequency is known as _______ A. principal mode of vibration B. natural mode of vibration C. both a. and b. D. none of the above

Last Answer : C. both a. and b.

Description : The motion of a system executing harmonic motion with one natural frequency is known as _______ A) principal mode of vibration B) natural mode of vibration C) both a. and b. D)none of the above

Last Answer : C) both a. and b.

Description : If harmonic motion of same frequency and same phase are superimposed in two perpendicular directions ( x and y) then, the resultant motion will be, A) circle B) An ellipse C) An square D) An rectangle

Last Answer : C) An square

Description : If ωmax is the frequency at which the peak amplitude occurs and ωn is the natural frequency of the system then In a forced vibration system with damping, the higher the damping, A) More will be ... and ωmax is independent of damping in this system D) The difference between ωn and ωmax will be zero

Last Answer : A) More will be the difference between ωn and ωmax

Description : A vibrating system having mass 1kg, a spring of stiffness 1000N/m and damping factor of 0.632 and it is put to harmonic excitation of 10N. Find the amplitude at resonance. A 0.079 B 7.9C 0.056 D 0.00791

Last Answer : D 0.00791

Description : The motion of particle is represented by, x = Asin(wt) in which A stands for A. Amplitude B. Wavelength C. Frequency D. Damping

Last Answer : A. Amplitude

Description : What is meant by critical damping coefficient? * 1 point (A) Frequency of damped free vibrations is less than zero (B). The motion is a periodic in nature (C). Both a. and b. (D). None of the above

Last Answer : (C). Both a. and b.

Description : What is meant by critical damping coefficient? A Frequency of damped free vibrations is less than zero B The motion is aperiodic in nature C Both a. and b. D None of the above

Last Answer : B The motion is aperiodic in nature

Description : What is meant by critical damping coefficient? B ( A )Frequency of damped free vibrations is less than zero ( B )The motion is aperiodic in nature ( C )Both a. and b. (D)None of the above

Last Answer : ( B )The motion is aperiodic in nature

Description : What is meant by critical damping coefficient? a. Frequency of damped free vibrations is less than zero b. The motion is aperiodic in nature c. Both a. and b. d. None of the above

Last Answer : b. The motion is aperiodic in nature

Description : For an under damped harmonic oscillator, resonance A Occurs when excitation frequency is greater than undamped natural frequency B Occurs when excitation frequency is less than undamped natural frequency C Occurs when excitation frequency is equal to undamped natural frequency D Never occurs

Last Answer : C Occurs when excitation frequency is equal to undamped natural frequency

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : For an underdamped harmonic oscillator, resonance ______. (A) occurs when excitation frequency is greater than the undamped natural frequency (B) occurs when excitation frequency is less than the ... ) occurs when excitation frequency is equal to the undamped natural frequency (D) never occurs

Last Answer : (C) occurs when excitation frequency is equal to the undamped natural frequency

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : The velocity vector in a vector diagram for a harmonic motion A Lags the displacement vector by 180 0 B Lags the displacement vector by 90 0 C Leads the displacement vector by 90 0 D Leads the displacement vector by 180 0

Last Answer : C Leads the displacement vector by 90 0

Description : The velocity vector in a vector diagram for a harmonic motion A Lags the displacement vector by 180 0 B Lags the displacement vector by 90 0 C Leads the displacement vector by 90 0 D Leads the displacement vector by 180 0

Last Answer : C Leads the displacement vector by 90 0

Description : The maximum acceleration of a particle moving with simple harmonic motion is ____. A. ω B. ω.r C. ω / 2 π D. 2 π / ω

Last Answer : B. ω.r

Description : Body having simple harmonic motion is represented by A) x = A sin ωt B) x = A cos ωt C) x = - A sin ωt D) x = - A cos ωt

Last Answer : A) x = A sin ωt

Description : The vector representing acceleration on a vector diagram for a harmonic motion A) Lags the displacement vector by 90° B) Lags the displacement vector by 180° C) Leads the displacement vector by 90° D) Leads the displacement vector by 180°

Last Answer : C) Leads the displacement vector by 90°

Description : The velocity vector in a vector diagram for a harmonic motion A) Lags the displacement vector by 180° B) Leads the displacement vector by 90° C) Lags the displacement vector by 90° D) Leads the displacement vector by 180°

Last Answer : B) Leads the displacement vector by 90°

Description : Harmonic motion is A) Necessarily a periodic motion B) An aperiodic motion C) A motion described in a circle D) A random motion

Last Answer : A) Necessarily a periodic motion

Description : The velocity vector in a vector diagram for a harmonic motion C (A) Lags the displacement vector by 180 0 (B) Lags the displacement vector by 90 0 (C) Leads the displacement vector by 90 0 (D) Leads the displacement vector by 180 0

Last Answer : (C) Leads the displacement vector by 90 0

Description : SHM stands for A. Single Harmonic Motion B. Simple Harmonic Motion C. Simple Harmonic Mechanism D. None of the above

Last Answer : B. Simple Harmonic Motion

Description : The maximum acceleration of a particle moving with simple harmonic motion is ____. (A) ω (B) ω.r (C) ω / 2 π (D) 2 π / ω

Last Answer : (B) ω.r

Description : A body is executing simple harmonic motion of amplitude 1 cm. Its velocitywhile passing through the central point is 10 mm/sec. Its frequency will be a.2.99 rps b.2.22 rps c.1 rps d.1.59 rps e.1.77 rps

Last Answer : c. 1 rps

Description : The period of oscillation of a particle undergoing simple harmonic motion is: w) independent of the amplitude of the motion x) directly proportional to the frequency of oscillation y) independent of the frequency of oscillation z) none of the above

Last Answer : ANSWER: W -- INDEPENDENT OF THE AMPLITUDE OF THE MOTION 

Description : A weight of 50 N is suspended from a spring of stiffness 4000N/m and subjected to a harmonic force of magnitude 60N and frequency 60 Hz. what will be the static displacement of the spring due to maximum applied force A. 0.015m B. 0.15 m C. 15 m D. 150m

Last Answer : B. 0.15 m

Description : When a two-degree-of-freedom system is subjected to a harmonic force, the system vibrates at the a. frequency of applied force b. smaller natural frequency c. larger natural frequency d. None of the above

Last Answer : a. frequency of applied force

Description : In coulomb damping, the amplitude of motion in each cycle is reduced by A. F/K B. 2F/K C. 4F/K D. F/4K

Last Answer : C. 4F/K

Description : Frequency of centrifugal pendulum absorber is always proportional to A) Oscillating motion B) Transfer motion C) Speed of rotating body D) All of the above

Last Answer : C) Speed of rotating body

Description : What is meant by node point? A. The point at which amplitude of vibration is maximum B. The point at which amplitude of vibration is minimum C. The point at which amplitude of vibration is zero D. None of the above

Last Answer : C. The point at which amplitude of vibration is zero

Description : A node means a section where the amplitude of vibration is A. Maximum B. Half of the maximum C. Zero D. 1⁄4 of the maximum

Last Answer : C. Zero

Description : In above numerical what will be the frequency corresponding to the peak amplitude A 14.18rad/sec B 24.13rad/sec C 20.22rad/sec D 22.32rad/sec

Last Answer : A 14.18rad/sec

Description : In damped free vibrations, which parameters indicate vibrations? A) Natural frequency B) Rate of decay of amplitude C) Both a. and b. D) None of the above

Last Answer : C) Both a. and b.

Description : In the case of steady state forced vibration at a resonance, the amplitude of vibration is A) Inversely proportional to damping coefficient B) Inversely proportional to damping ratio C) Inversely proportional to resonant frequency D) Directly proportional to resonant frequency

Last Answer : B) Inversely proportional to damping ratio

Description : The number of cycles per unit time is called _________ A. Period B. Frequency C. Amplitude D. Wavelength

Last Answer : B. Frequency

Description : In damped free vibrations, which parameters indicate vibrations? a. Natural frequency b. Rate of decay of amplitude c. Both a. and b. d. None of the above

Last Answer : c. Both a. and b.

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ * 1 point (A) Frictional resistance (B) Work done(C) Fluid pressure (D) Air pressure

Last Answer : (A) Frictional resistance

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ a) Frictional resistance b) Work done c) Fluid pressure d) Air pressure

Last Answer : a) Frictional resistance

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that A Its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration D Measurement of vibratory motion is without any reference point

Last Answer : C Its natural frequency is equal to the frequency of vibration

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that a) its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration d) measurement of vibratory motion is without any reference point

Last Answer : c) its natural frequency is equal to the frequency of vibration

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that ______. (A) its natural frequency is very low in comparison to the ... is equal to the frequency of vibration (D) measurement of vibratory motion is without any reference poin

Last Answer : (C) its natural frequency is equal to the frequency of vibration

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that a) its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration d) measurement of vibratory motion is without any reference poin

Last Answer : c) its natural frequency is equal to the frequency of vibration

Description : At which frequency ratio, phase angle increases as damping factor increases? A. When frequency ratio is less than unity B. When frequency ratio is more than unity C. When frequency ratio is zero D. All of the above

Last Answer : A. When frequency ratio is less than unity

Description : Which of the following statements dealing with simple harmonic motion of a mass-spring system is TRUE? w) The acceleration is largest when the oscillating mass is instantaneously at rest. x) The ... of the motion. z) The acceleration is larger when the oscillating mass has its greatest velocity.

Last Answer : ANSWER: W -- THE ACCELERATION IS LARGEST WHEN THE OSCILLATING MASS IS INSTANTANEOUSLY AT REST