Which of the following vibro-meters have frequency ratio (ω/ω n ) << 1?
A. Accelerometers
B. Velometers
C. Both A. and B.
D. None of the above

1 Answer

Answer :

A. Accelerometers

Related questions

Description : In the graph shown below, the region in which frequency ratio (ω/ω n ) > √2 is known as____ A. Amplification region B. Isolation region C. Spring controlled region D. None of the above

Last Answer : B. Isolation region

Description : A vibrating machine of 100 kg is mounted on a rubber pad which has stiffness of 500 N/m. Determine force transmitted to the foundation if the unbalanced force 500 N acts on it. The frequency ratio (ω/ω n ) is 1.5 and ξ = 0.5 A. 461.62 N B. 400.23 N C. 450 N D. Insufficient data

Last Answer : A. 461.62 N

Description : A shaft of diameter d carries two discs at its two ends. The lowest torsional frequency is ω n . If the diameter is doubled, then the lowest torsional frequency becomes A 4ω n B ω n /2 C ω n /4 D 4ω n

Last Answer : D 4ω n

Description : A shaft of length l carries two discs at its two ends. The lowest torsional frequency is ω n . If the shaft length is doubled, then the lowest torsional frequency becomes A ω n /2 B ω n /√2 C √2ω n D 2ω n

Last Answer : B ω n /√2

Description : The natural frequency of a spring-mass system on earth is ω n . The natural frequency of this system on the moon (g moon = g earth /6) is a) ω n b) 0.408ω n c) 0.204ω n d) 0.167ω n

Last Answer : a) ω n

Description : The natural frequency of a spring-mass system on earth is ω n . The natural frequency of this system on the moon (g moon = g earth /6) is a) ω n b) 0.408ω n c) 0.204ω n d) 0.167ω n

Last Answer : a) ω n

Description : The two resonant frequency ratio (ω/ ω2) in a dynamic vibration absorber system for a mass ratio 0.2 are given by A) 0 ; 1.0 B) 0.801 ; 1.248 C) 0.458 ; 1.124 D) 0.642 ; 1.558

Last Answer : B) 0.801 ; 1.248

Description : Calculate damping ratio if mass = 200Kg, ω = 20rad/s and damping coefficient = 800 N/m/s A. 0.03 B. 0.04 C. 0.05 D. 0.06

Last Answer : A. 0.03

Description : Consider the steady-state absolute amplitude equation shown below, if ω / ω n = √2 then amplitude ratio (X/Y) =? (X/Y) = √{1 + [ 2ξ (ω/ω n )] 2 } / √{[1 – (ω/ω n ) 2 ] 2 + {2ξ (ω/ω n ) 2 } A. 0 B. 1 C. less than 1 D. greater than 1

Last Answer : B. 1

Description : Calculate damping ratio from the following data: mass = 200Kg ω = 20rad/s damping coefficient = 1000 N/m/s a) 0.03 b) 0.04 c) 0.05 d) 0.06

Last Answer : b) 0.04

Description : Calculate damping ratio from the following data: mass = 200Kg ω = 20rad/s damping coefficient = 800 N/m/s a) 0.03 b) 0.04 c) 0.05 d) 0.06

Last Answer : a) 0.03

Description : The accelerometers are commonly used in vibration measurement due to their ___________. (A) small size and low sensitivity (B) the large size and high sensitivity (C) the large size and low sensitivity (D) small size and high sensitivity

Last Answer : (D) small size and high sensitivity

Description : The accelerometers are commonly used in vibration measurement due to their ___________. (A) small size and low sensitivity (B) the large size and high sensitivity (C) the large size and low sensitivity (D) small size and high sensitivity

Last Answer : (D) small size and high sensitivity

Description : In vibration isolation system, if ω/ω n > 1, then the phase difference between the transmitted force and the disturbing force is A. 0° B. 90° C. 180° D. 270°

Last Answer : C. 180°

Description : In vibration isolation system, if ω/ω n < 2, then for all values of damping factor, the transmissibility will be a) less than unity b) equal to unity c) greater than unity d) zero

Last Answer : c) greater than unity

Description : In vibration isolation system, if ω/ω n , then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270°

Last Answer : c) 180°

Description : Calculate critical damping coefficient in N/m/s from the following data: mass = 100Kg ω = 40rad/s a) 25,132 b) 26,132 c) 27,132 d) 28,132

Last Answer : a) 25,132

Description : In vibration isolation system, if ω/ω n < 2, then for all values of damping factor, the transmissibility will be a) less than unity b) equal to unity c) greater than unity d) zero

Last Answer : c) greater than unity

Description : In vibration isolation system, if ω/ω n , then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270

Last Answer : c) 180°

Description : In vibration isolation system, if ω/ω n > 1, then the phase difference between the transmitted force and the disturbing force is a) 0° b) 90° c) 180° d) 270°

Last Answer : c) 180°

Description : n vibration isolation system, if ω/ω n is less than √2 , then for all values of the damping factor, the transmissibility will be a) less than unity b) equal to unity c) greater than unity d) zero

Last Answer : c) greater than unity

Description : In vibration isolation system, if ω/ωn, then the phase difference between the transmitted force and the disturbing force is A 0° B 90° C 180° D 270°

Last Answer : C 180°

Description : In vibration isolation system, if ω/ωn < 2, then for all values of damping factor, the transmissibility will be A less than unity B equal to unity C greater than unity D zero

Last Answer : C greater than unity

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... Φ) C x = (A - Bt) e - ωt D x = X e - ξωt (cos ω d t + Φ)

Last Answer : A x = (A + Bt) e – ωt

Description : In vibration isolation system, the transmissibility will be equal to unity, for all values of damping factor, if ω/ωn is A. Equal to 1 B. Equal to √2 C. Less than √2 D. Greater than √2

Last Answer : B. Equal to √2

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... ) C. x = (A - Bt) e - ωt D. x = X e - ξωt (cos ω d t + Φ

Last Answer : A. x = (A + Bt) e – ωt

Description : Which among the following is the fundamental equation of S.H.M.? A. x + (k / m) x =0 B. x + ω 2 x =0 C. x + (k/ m) 2 x =0 D. x 2 + ωx 2 =0

Last Answer : B. x + ω 2 x =0

Description : The maximum acceleration of a particle moving with simple harmonic motion is ____. A. ω B. ω.r C. ω / 2 π D. 2 π / ω

Last Answer : B. ω.r

Description : The condition to be fulfilled in the design of spring for vibration isolation of a system where excitation is due to a rotating unbalance is A) ω ωn D) ω >> ωn

Last Answer : A) ω

Description : The response of a damped forced vibration system A) Leads the system excitation ( for all values of ω/ ωn) B) Lags the system excitation ( for all values of ω/ ωn) C) Leads the system excitation ( for all values of ω/ ωn

Last Answer : B) Lags the system excitation ( for all values of ω/ ωn)

Description : Which among the following is the fundamental equation of S.H.M.? A) x + (k / m) x =0 B) x + ω 2 x =0 C) x + (k/ m) 2 x =0 D) x 2 + ωx 2 =0

Last Answer : B) x + ω 2 x =0

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the A differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... (C)x = (A - Bt) e - ωt ( D )x = X e - ξωt (cos ω d t + Φ

Last Answer : ( A ) x = (A + Bt) e – ωt

Description : The unbalanced force caused by an eccentric mass m rotating at an angular speed v and located at a distance r from the axis of rotation is 2 a. mr ω 2 b. mgω 2 c. mr ω 2

Last Answer : c. mr ω 2

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equati damped free vibrations having single degree of freedom. What will be the solution to this differ equation if the system is critically ... c. x = (A - Bt) e - ωt d. x = X e - ξωt (cos ω d t + Φ)

Last Answer : a. x = (A + Bt) e – ωt

Description : Which among the following is the fundamental equation of S.H.M.? a. x+(k/m)x=0 b. x+ω 2 x=0 c. x+(k/m) 2 x=0 d. x 2 + ωx 2 =0

Last Answer : d. x 2 + ωx 2 =0

Description : The maximum acceleration of a particle moving with simple harmonic motion is ____. (A) ω (B) ω.r (C) ω / 2 π (D) 2 π / ω

Last Answer : (B) ω.r

Description : If Ic = 125 Kg-m 2 and ω= 20 rad/s, calculate the kinetic of the constraint. a) 8333 J b) 7333 J c) 6333 J d) 9333 J

Last Answer : a) 8333 J

Description : Calculate critical damping coefficient in Ns/m from the following data. mass = 200Kg ω = 20rad/sa) 25,132 b) 26,132 c) 27,132 d) Not possible

Last Answer : d) Not possible

Description : . In centrifugal pendulum absorber , the natural frequency in cycle per second can be given by A Fn =N √(R/L) B Fn =1/N √(R/L) C Fn =N/2 √(R/L) D Fn =N2 √(R/L)

Last Answer : A Fn =N √(R/L)

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A 12.32 Hz B 4.10 Hz C 6.16 HzD None of the above

Last Answer : C 6.16 Hz

Description : A 1 kg mass is suspended by a spring having a stiffness of 0.4 N/mm. Determine the natural frequency. A 20 rad/sec B 30 rad/sec C 20 Hz D 30 Hz

Last Answer : B 30 rad/sec

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 43200 N/m and mass of 12 kg. A 40.22 rad/sec B 40 Hz C 60 Hz D 60 rad/sec

Last Answer : D 60 rad/sec

Description : A weight of 50 N is suspended from a spring of stiffness 4000N/m and subjected to a harmonic force of magnitude 60N and frequency 60 Hz. what will be the static displacement of the spring due to maximum applied force A. 0.015m B. 0.15 m C. 15 m D. 150m

Last Answer : B. 0.15 m

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A. 12.32 Hz B. 4.10 Hz C. 6.16 Hz D. None of the above

Last Answer : C. 6.16 Hz

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. A. 5.14 Hz B. 9.14 Hz C. 11.14 Hz D. 28.14 Hz

Last Answer : C. 11.14 Hz

Description : In centrifugal pendulum absorber , the natural frequency in cycle per second can be given by A) Fn =N √(R/L) B) Fn =1/N √(R/L) C) Fn =N/2 √(R/L) D) Fn =N2 √(R/L)

Last Answer : A) Fn =N √(R/L)

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A) 12.32 Hz B) 4.10 Hz C) 6.16 Hz D) None of the above

Last Answer : C) 6.16 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? C ( A )12.32 Hz (B) 4.10 Hz ( C )6.16 Hz (D)None of the above

Last Answer : ( C )6.16 Hz