Frequency is equal to ______.
A time period
B 1/time period
C *time period
D /time period

1 Answer

Answer :

B 1/time period

Related questions

Description : Frequency is equal to ______. * 1 point (A) time period (B) 1/time period (C) *time period (D) /time period

Last Answer : (B) 1/time period

Description : Frequency is equal to ______. A. time period B. 1/time period C. *time period D. /time period

Last Answer : B. 1/time period

Description : Frequency is equal to ______. B ( A ) time period ( B ) 1/time period ( C ) *time period ( D ) /time period

Last Answer : ( B ) 1/time period

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that ______. (A) its natural frequency is very low in comparison to the ... is equal to the frequency of vibration (D) measurement of vibratory motion is without any reference poin

Last Answer : (C) its natural frequency is equal to the frequency of vibration

Description : For an underdamped harmonic oscillator, resonance ______. (A) occurs when excitation frequency is greater than the undamped natural frequency (B) occurs when excitation frequency is less than the ... ) occurs when excitation frequency is equal to the undamped natural frequency (D) never occurs

Last Answer : (C) occurs when excitation frequency is equal to the undamped natural frequency

Description : Critical speed is expressed as ______. A) rotation of the shaft in degrees (B) rotation of the shaft in radians (C) rotation of the shaft in minutes (D) the natural frequency of the shaf

Last Answer : (D) the natural frequency of the shaft

Description : The motion completed during one time period is known as _______. A period of vibration B cycle C frequency D all of the above

Last Answer : B cycle

Description : A spring mass system has time period of oscillation of 0.25 sec. What will be the natural frequency of the system? A 1 Hz B 2 rad sec C 4 rad/sec D 4 Hz

Last Answer : D 4 Hz

Description : The reciprocal of the interval of time by a vibrating body to complete a cycle is called A Period B Frequency C Resonance D None of the mentioned

Last Answer : B Frequency

Description : Time taken to complete one cycle is known as A Resonance B Frequency C Period D Damping

Last Answer : C Period

Description : The motion completed during one time period is known as _______. A. period of vibration B. cycle C. frequency D. all of the above

Last Answer : B. cycle

Description : . The motion completed during one time period is known as _______. A. period of vibration B. cycle C. frequency D. all of the above

Last Answer : B. cycle

Description : The motion completed during one time period is known as _______. B ( A ) period of vibration ( B ) cycle ( C ) frequency ( D ) all of the above

Last Answer : ( B ) cycle

Description : The number of cycles per unit time is called _________ A. Period B. Frequency C. Amplitude D. Wavelength

Last Answer : B. Frequency

Description : The number of cycles described in one second is known as _______. A period of vibration B cycle C frequency D all of the above

Last Answer : C frequency

Description : The number of cycles described in one second is known as _______. C ( A ) period of vibration ( B ) cycle ( C ) frequency ( D ) all of the above

Last Answer : C ) frequency

Description : When a body moves with simple harmonic motion, the product of its periodic time and frequency is equal to A. Zero B. One C. π/2 D. 2π

Last Answer : B. One

Description : For an under damped harmonic oscillator, resonance A Occurs when excitation frequency is greater than undamped natural frequency B Occurs when excitation frequency is less than undamped natural frequency C Occurs when excitation frequency is equal to undamped natural frequency D Never occurs

Last Answer : C Occurs when excitation frequency is equal to undamped natural frequency

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that A Its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration D Measurement of vibratory motion is without any reference point

Last Answer : C Its natural frequency is equal to the frequency of vibration

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in A Transverse vibrations B Torsional vibrations C Longitudinal vibrations D None of the mentioned

Last Answer : A Transverse vibrations

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : Critical speed of shaft and disc system A) Is equal to natural frequency of the system in transverse vibration B) Is equal to natural frequency of the system in torsional vibration C) Is ... of the system in longitudinal vibration D) Bears no relationship to any of the system natural frequency

Last Answer : A) Is equal to natural frequency of the system in transverse vibration

Description : Which of the following condition should be satisfied in the design of a vibration absorber ? A) Natural frequency of the auxiliary system should be equal to the natural frequency of the main ... D) Natural frequency of the auxiliary system should be twice natural frequency of the main system

Last Answer : A) Natural frequency of the auxiliary system should be equal to the natural frequency of the main system

Description : Semi definite system having one of their natural frequency equal to A) Four B) Three C) Two D) Zero

Last Answer : D) Zero

Description : In case of viscous damping the frequency of damped vibration is A) Equal to that of undamped vibrations B) Less than that of undamped vibrations C) Greater than that of undamped vibrations D) Independent than that of undamped vibrations

Last Answer : B) Less than that of undamped vibrations

Description : When the frequency of external exciting force is equal to the natural frequency of the vibration of the system A. The amplitude of vibration is zero B. The amplitude of vibration is significantly small C. The amplitude of vibration is very large D. The amplitude does not change

Last Answer : C. The amplitude of vibration is very large

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that a) its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration d) measurement of vibratory motion is without any reference point

Last Answer : c) its natural frequency is equal to the frequency of vibration

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) Square root (k/m) / (2π) b) Square root (g/δ) / (2π) c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that a) its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration d) measurement of vibratory motion is without any reference poin

Last Answer : c) its natural frequency is equal to the frequency of vibration

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) 1/2π√s/m b) 1/2π√g/δ c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : In under damped vibrating system, the amplitude of vibration ______. (A) decreases linearly with time (B) increases linearly with time (C) decreases exponentially with time (D) increases exponentially with time

Last Answer : (C) decreases exponentially with time

Description : Often an unbalance of forces is produced in rotary or reciprocating machinery due to the ______ * 1 point (A) Centripetal forces (B) Centrifugal forces (C) Friction forces (D) Inertia forces

Last Answer : (D) Inertia forces

Description : In a two-rotor system, torsional vibration occurs only if the rotors are moving in the ______ direction. (A) same (B) opposite (C) either same or opposite (D) none of the above

Last Answer : (B) opposite

Description : In Fullarton Tachometer, a thin strip with a ______ is attached at one of its ends. (A) mass (B) spring (C) damper (D) shaft

Last Answer : (A) mass

Description : Unit of the damping factor is ______. (A) Nm/s (B) N/sm (C) N/m (D) none of the above

Last Answer : (D) none of the above

Description : In a two-rotor system, torsional vibration occurs only if the rotors are moving in the ______ direction. A. same B. opposite C. either same or opposite D. none of the above

Last Answer : B. opposite

Description : δ = (W a 2 b 2 ) / (3 EIL) is the value of deflection for ______ A. simply supported beam which has central point load B. simply supported beam which has eccentric point load C. simply supported beam which has U.D.L. point load per unit length D. fixed beam which has central point load

Last Answer : B. simply supported beam which has eccentric point load

Description : δ = (W a 2 b 2 ) / (3 EIl) is the value of deflection for ______ a. simply supported beam which has central point load b. simply supported beam which has eccentric point load c. simply supported beam which has U.D.L. point load per unit length d. fixed beam which has central point load

Last Answer : b. simply supported beam which has eccentric point load

Description : The damping factor is the measure of the relative amount of damping in the existing system with that necessary for the ______ system. (A) underdamped (B) overdamped (C) critical damped (D) all of the above

Last Answer : (C) critical damped

Description : If a mass whose moment of inertia is Ic/3 is placed at the free end and the constraint is assumed to be of negligible mass, then the kinetic energy is ______ a) 1/6 Icω 2 b) 1/2Icω 2 c) 1/3Icω 2 d) 1/12Icω 2

Last Answer : a) 1/6 Icω 2

Description : The resistance to the motion of the body is provided by ______ a) Medium of vibration b) Speed of vibration c) Length of the material d) External friction

Last Answer : a) Medium of vibration

Description : Fluid resistance causes damping which is known as ______ a) Resistance damping b) Fluid dampingc) Viscous damping d) Liquid damping

Last Answer : c) Viscous damping

Description : The following function plays an important role in the experimental modal analysis: a. time-response function b. modal-response function c. frequency-response function

Last Answer : c. frequency-response function

Description : In above numerical what will be the new time period if the spring constant is decreased by 50%. A 0.5 sec B 0.353 sec C 0.125 sec D 0.533 sec

Last Answer : B 0.353 sec

Description : The time period of a simple pendulum does not depend upon the mass of the body suspended at the free end of the string. This statement is known as ___________ . (A) law of gravity (B) law of mass (C) law of isochronism (D) law of length

Last Answer : (B) law of mass