The velocity vector in a vector diagram for a harmonic motion
A Lags the displacement vector by 180 0
B Lags the displacement vector by 90 0
C Leads the displacement vector by 90 0
D Leads the displacement vector by 180 0

1 Answer

Answer :

C Leads the displacement vector by 90 0

Related questions

Description : The velocity vector in a vector diagram for a harmonic motion A Lags the displacement vector by 180 0 B Lags the displacement vector by 90 0 C Leads the displacement vector by 90 0 D Leads the displacement vector by 180 0

Last Answer : C Leads the displacement vector by 90 0

Description : The velocity vector in a vector diagram for a harmonic motion C (A) Lags the displacement vector by 180 0 (B) Lags the displacement vector by 90 0 (C) Leads the displacement vector by 90 0 (D) Leads the displacement vector by 180 0

Last Answer : (C) Leads the displacement vector by 90 0

Description : The velocity vector in a vector diagram for a harmonic motion A) Lags the displacement vector by 180° B) Leads the displacement vector by 90° C) Lags the displacement vector by 90° D) Leads the displacement vector by 180°

Last Answer : B) Leads the displacement vector by 90°

Description : The vector representing acceleration on a vector diagram for a harmonic motion A) Lags the displacement vector by 90° B) Lags the displacement vector by 180° C) Leads the displacement vector by 90° D) Leads the displacement vector by 180°

Last Answer : C) Leads the displacement vector by 90°

Description : The response of a damped forced vibration system A) Leads the system excitation ( for all values of ω/ ωn) B) Lags the system excitation ( for all values of ω/ ωn) C) Leads the system excitation ( for all values of ω/ ωn

Last Answer : B) Lags the system excitation ( for all values of ω/ ωn)

Description : A weight of 50 N is suspended from a spring of stiffness 4000N/m and subjected to a harmonic force of magnitude 60N and frequency 60 Hz. what will be the static displacement of the spring due to maximum applied force A. 0.015m B. 0.15 m C. 15 m D. 150m

Last Answer : B. 0.15 m

Description : In case of simple harmonic motion, displacement is proportional to the (A) Velocity (B) Acceleration (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : B) Acceleration

Description : At resonance the phase angle is equal to A 0 0B 180 0 C 120 0 D 90 0

Last Answer : D 90 0

Description : The angle between spring force and damping force is A 180 0 B 120 0 C 90 0 D 0 0

Last Answer : C 90 0

Description : The angle between spring force and damping force is A. 180 0 B. 90 0 C. 0 0 D. None of the above

Last Answer : B. 90 0

Description : The motion of a system executing harmonic motion with one natural frequency is known as _______ A. principal mode of vibration B. natural mode of vibration C. both a. and b. D. none of the above

Last Answer : C. both a. and b.

Description : When a body moves with simple harmonic motion, the product of its periodic time and frequency is equal to A. Zero B. One C. π/2 D. 2π

Last Answer : B. One

Description : The maximum acceleration of a particle moving with simple harmonic motion is ____. A. ω B. ω.r C. ω / 2 π D. 2 π / ω

Last Answer : B. ω.r

Description : The motion of a system executing harmonic motion with one natural frequency is known as _______ A) principal mode of vibration B) natural mode of vibration C) both a. and b. D)none of the above

Last Answer : C) both a. and b.

Description : If frequency of excitation of a forced vibration system with negligible damping is very close to natural frequency of the system, then the system will A) Execute harmonic motion of large amplitude B) Beat with a very high peak amplitude C) Perform aperiodic motion D) None of the above

Last Answer : A) Execute harmonic motion of large amplitude

Description : Body having simple harmonic motion is represented by A) x = A sin ωt B) x = A cos ωt C) x = - A sin ωt D) x = - A cos ωt

Last Answer : A) x = A sin ωt

Description : If the amplitude of harmonic motion is large, its frequency A) Will always be high B) Will always be less C) Can have any value D) Will be zero

Last Answer : C) Can have any value

Description : If harmonic motion of same frequency and same phase are superimposed in two perpendicular directions ( x and y) then, the resultant motion will be, A) circle B) An ellipse C) An square D) An rectangle

Last Answer : C) An square

Description : Harmonic motion is A) Necessarily a periodic motion B) An aperiodic motion C) A motion described in a circle D) A random motion

Last Answer : A) Necessarily a periodic motion

Description : The resultant motion of two Simple Harmonic Motions will be A. Simple Harmonic MotionB. Periodic Motion C. Projectile Motion D. Zero

Last Answer : A. Simple Harmonic Motion

Description : SHM stands for A. Single Harmonic Motion B. Simple Harmonic Motion C. Simple Harmonic Mechanism D. None of the above

Last Answer : B. Simple Harmonic Motion

Description : The maximum acceleration of a particle moving with simple harmonic motion is ____. (A) ω (B) ω.r (C) ω / 2 π (D) 2 π / ω

Last Answer : (B) ω.r

Description : The emf induced in the primary of a transformer (A) is in phase with the flux. (B) lags behind the flux by 90 degree. (C) leads the flux by 90 degree. (D) is in phase opposition to that of flux.

Last Answer : (C) leads the flux by 90 degree.

Description : SHM is the motion in which acceleration of the body is proportional to its displacement and directed towards the mean position. A. True B. False C. Neither True Nor False D. None

Last Answer : A. True

Description : The equations of motion of a two-degree-of-freedom system can be expressed in terms of the displacement of either of the two masses.

Last Answer : True

Description : The vibration in a vehicle is normally expressed in the terms of the ______________. (A) displacement (B) velocity (C) acceleration (D) none of the above

Last Answer : (C) acceleration

Description : A seismometer is a device used to measure the ___________ of a vibrating body. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (A) displacement

Description : Which of the following relations is true for viscous damping? A) Force α relative displacement B) Force α relative velocity C) Force α (1 / relative velocity) D) None of the above

Last Answer : B) Force α relative velocity

Description : Which of the following relations is true for viscous damping? a. Force α relative displacement b. Force α relative velocity c. Force α (1 / relative velocity) d. None of the above

Last Answer : b. Force α relative velocity

Description : A seismometer is a device used to measure the ___________ of a vibrating body. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (A) displacement

Description : The instruments which are used to measure the ___________ of a vibrating body are called vibration measuring instrument. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (D) all of the above

Description : A vibrating system having mass 1kg, a spring of stiffness 1000N/m and damping factor of 0.632 and it is put to harmonic excitation of 10N. Find the amplitude at resonance. A 0.079 B 7.9C 0.056 D 0.00791

Last Answer : D 0.00791

Description : A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of √3k/m , the ratio of the amplitude of steady state response to the static deflection of the spring is __________ A. 0.2 B. 0.5 C. 0.8 D. None of the above

Last Answer : B. 0.5

Description : A body which is attached to a spring undergoes simple harmonic motion. The magnitude of the body's acceleration is: w) constant x) proportional to its displacement from its equilibrium position y) zero z) always increasing.

Last Answer : ANSWER: X -- PROPORTIONAL TO ITS DISPLACEMENT FROM ITS EQUILIBRIUM POSITION 

Description : Which of the following statements is/are true for coulomb damping? 1. Coulomb damping occurs due to friction between two lubricated surfaces2. Damping force is opposite to the direction of motion of vibrating body ... 2, 3 and statement 4 c. Only statement 2 d. All the above statements are true

Last Answer : c. Only statement 2

Description : For an under damped harmonic oscillator, resonance A Occurs when excitation frequency is greater than undamped natural frequency B Occurs when excitation frequency is less than undamped natural frequency C Occurs when excitation frequency is equal to undamped natural frequency D Never occurs

Last Answer : C Occurs when excitation frequency is equal to undamped natural frequency

Description : When a two-degree-of-freedom system is subjected to a harmonic force, the system vibrates at the a. frequency of applied force b. smaller natural frequency c. larger natural frequency d. None of the above

Last Answer : a. frequency of applied force

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : For an underdamped harmonic oscillator, resonance ______. (A) occurs when excitation frequency is greater than the undamped natural frequency (B) occurs when excitation frequency is less than the ... ) occurs when excitation frequency is equal to the undamped natural frequency (D) never occurs

Last Answer : (C) occurs when excitation frequency is equal to the undamped natural frequency

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : In measuring critical speed of shaft experiment, it was found that the frequency ratio is 0.707 when the eccentricity is 0.05 m. what will be the displacement of the system. A. 0.05 m B. 0.005 m C. 0.5 m D. Infinite

Last Answer : A. 0.05 m

Description : f the mass is of 10 Kg, find the natural frequency in Hz of the free longitudinal vibrations. The displacement is 0.01mm. a) 44.14 b) 49.85 c) 43.43 d) 46.34

Last Answer : b) 49.85

Description : Find the displacement in mm of the free longitudinal vibrations if the Natural frequency is 20 Hz. a) 0.1 b) 0.2 c) 0.5 d) 0.6

Last Answer : d) 0.6

Description : In cables the charging current (a) lags the voltage by 90° (b) leads the voltage by 90° (c) lags the voltage by 180° (d) leads the voltage by 180°

Last Answer : (b) leads the voltage by 90°

Description : No load current in a transformer: (A) lags the applied voltage by 90° (B) lags the applied voltage by somewhat less than 90° (C) leads the applied voltage by 90° (D) leads the applied voltage by somewhat less than 90°

Last Answer : Ans: B The primary input current under no load conditions has to supply (i) iron losses in the core i.e hysteresis loss and eddy current loss (ii) a very small amount of Cu loss in the primary (there being no Cu loss in secondary as it is open)

Description : In a three phase transformer, if the primary side is connected in star and secondary side is connected in delta, what is the angle difference between phase voltage in the two cases. (A) delta side lags by -30°. (B) star side lags by -30°. (C) delta side leads by 30°. (D) star side leads by -30°.

Last Answer : Ans: C This is vector group and has +30° displacement. Therefore, delta side leads by +30°.

Description : A body in Simple Harmonic Motion will attain maximum velocity when it passes through a.Point of 0.75 amplitude b.Extreme point of the oscillation of L.H.S. c.Point of half amplitude d.Extreme point of the oscillation at R.H.S. e.Mean position

Last Answer : e. Mean position

Description : Magnification factor is the ratio of the maximum displacement due to forced vibrations to the deflection due to _______ A Static force B Dynamic force C Torsion D Compression

Last Answer : A Static force

Description : The ratio of the maximum displacement of the forced vibration to the deflection due to the static force, is known as A Damping factor B Damping coefficient C Logarithmic decrement D Magnification factor

Last Answer : D Magnification factor