A compound serving a link between citric acid cycle and urea cycle is (A) Malate (B) Citrate (C) Succinate (D) Fumarate

1 Answer

Answer :

Answer : D

Related questions

Description : Fluoroacetate inhibits the reaction of citric acid cycle: (A) Isocitrate α-Ketoglutarate (B) Fumarate α-Malate (C) Citrate α-cis-aconitate (D) Succinate α-fumarate

Last Answer : Answer : C

Description : The example of generation of a high energy phosphate at the substrate level in the citric acid cycle is the reaction: (A) Isocitrate α-Ketoglutarate (B) Succinate α-fumarate (C) Malate α-oxaloacetate (D) Succinyl CoA α-Succinate

Last Answer : Answer : D

Description : The carrier of the citric acid cycle is (A) Succinate (B) Fumarate (C) Malate (D) Oxaloacetate

Last Answer : D

Description : The reaction of Kreb’s cycle which does not require cofactor of vitamin B group is (A) Citrate isocitrate (B) α -Ketoglutarate succinate (C) Malate oxaloacetate (D) Succinate fumarate

Last Answer : Answer : A

Description : The integrator between the TCA cycle and urea cycle is (A) Fumarate (B) Malate (C) Pyruvate (D) Citrate

Last Answer : Answer : A

Description : All of the following intermediates of citric acid cycle can be formed from amino acids except (A) α-Ketoglutarate (B) Fumarate (C) Malate (D) Oxaloacetate

Last Answer : Answer : C

Description : The substance which may be considered to play a catalytic role in citric acid cycle is (A) Oxaloacetate (B) Isocitrate (C) Malate (D) Fumarate

Last Answer : Answer : A

Description : Among citric acid cycle enzymes, a flavoprotein is (A) Malate (B) Fumarase (C) Succinate dehrogenase (D) Isocitrate dehrogenase

Last Answer : Answer : C

Description : A carrier molecule in the citric acid cycle is (A) Acetyl-CoA (B) Citrate (C) Oxaloacetate (D) Malate

Last Answer : Answer : C

Description : An enzyme of the citric acid cycle also found outside the mitochondria is (A) Isocitrate dehydrogenase (B) Citrate synthetase (C) α-Ketoglutarate dehydrogenase (D) Malate dehydrogenase

Last Answer : Answer : C

Description : All of the following are intermediates of citric acid cycle except (A) Oxalosuccinate (B) Oxaloacetate (C) Pyruvate (D) Fumarate

Last Answer : Answer : C

Description : Out of 24 mols of ATP formed in TCA cycle, 2 molecules of ATP can be formed at “substrate level” by which of the following reaction ? (A) Citric acid→ Isocitric acid (B) Isocitrate→ Oxaloacetate (C) Succinic acid→ Fumarate (D) Succinylcat→ Succinic acid

Last Answer : D

Description : The rate of citric acid cycle is controlled by the allosteric enzyme: (A) Aconitase (B) Fumarase (C) Fumarase (D) Malate dehydrogenase

Last Answer : Answer : C

Description : Substrate level phosphorylation in TCA cycle is in step: (A) Isocitrate dehydrogenase (B) Malate dehydrogenase (C) Aconitase (D) Succinate thiokinase

Last Answer : D

Description : In citric acid cycle, GDP is phosphorylated by (A) Succinate dehydrogenase (B) Aconitase (C) Succinate thiokinase (D) Fumarse

Last Answer : Answer : C

Description : The initial step of the citric acid cycle is (A) Conversion of pyruvate to acetyl-CoA (B) Condensation of acetyl-CoA with oxaloacetate (C) Conversion of citrate to isocitrate (D) Formation of α -ketoglutarate catalysed by isocitrate dehydrogenase

Last Answer : Answer : B

Description : Mitochondrial membrane is freely preamble to (A) Pyruvate (B) Malate (C) Oxaloacetate (D) Fumarate

Last Answer : Answer : B

Description : All enzymes of TCA cycle are located in the mitochondrial matrix except one which is located in inner mitochondrial membranes in eukaryotes and in cytosol in prokaryotes. This enzyme is (a) isocitrate dehydrogenase (b) malate dehydrogenase (c) succinate dehydrogenase (d) lactate dehydrogenase.

Last Answer : (c) succinate dehydrogenase

Description : Active transport of sugar is depressed by the agent: (A) Oxaloacetate (B) Fumarate (C) Malonate (D) Succinate

Last Answer : C

Description : For extramitochondrial fatty acid synthesis, acetyl CoA may be obtained from (A) Citrate (B) Isocitrate (C) Oxaloacetate (D) Succinate

Last Answer : Answer : A

Description : Which of the following is not having an apoenzyme and coenzyme? (A) Lactate dehydrogenase (B) Succinate dehydrogenase (C) Malate dehydrogenase (D) Pepsin

Last Answer : Answer : D

Description : Malonate is an inhibitor of (A) Malate dehydrogenase (B) α-Ketoglutarate dehydrogenase (C) Succinate dehydrogenase (D) Isocitrate dehydrogenase

Last Answer : Answer : C

Description : An enzyme catalyzing oxidoreduction, using oxygen as hydrogen acceptor is (A) Cytochrome oxidase (B) Lactate dehydrogenase (C) Malate dehydrogenase (D) Succinate dehydrogenase

Last Answer : Answer : A

Description : NAD is required as a coenzyme for (A) Malate dehydrogenase (B) Succinate dehydrogenase (C) Glucose-6-phosphate dehydrogenase (D) HMG CoA reductae

Last Answer : Answer : A

Description : NADPH is produced when this enzyme acts (A) Pyruvate dehydrogenase (B) Malic enzyme (C) Succinate dehydrogenase (D) Malate dehydrogenase

Last Answer : Answer : B

Description : The metabolism of protein is integrated with that of carbohydrate and fat through (A) Oxaloacetate (B) Citrate (C) Isocitrate (D) Malate

Last Answer : Answer : A

Description : Select the oral iron preparation which does not impart metallic taste and has good oral tolerability despite high iron content but whose efficacy in treating iron deficiency anaemia has been questioned: A. Iron hydroxy polymaltose B. Ferrous succinate C. Ferrous fumarate D. Ferrous gluconate

Last Answer : A. Iron hydroxy polymaltose

Description : A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (D) Fluoride

Last Answer : Answer : B

Description : All of the following are allosteric enzymes except (A) Citrate synthetase (B) a-Ketoglutarate dehdrogenase (C) Succinate thiokinase (D) Succinate dehydrogenase

Last Answer : Answer : C

Description : In gluconeogensis, an allosteric activator required in the synthesis of oxaloacetate from bicarbonate and pyruvate, which is catalysed by the enzyme pyruvate carboxylase is (A) Acetyl CoA (B) Succinate (C) Isocitrate (D) Citrate

Last Answer : Answer : A

Description : A specific inhibitor for succinate dehydrogenase is (A) Arsenine (B) Arsenite (C) Citrate (D) Fluoride ENZYMES 147

Last Answer : Answer : B

Description : A specific inhibitor for succinate dehydrogenase is (A) Arsinite (B) Melouate (C) Citrate (D) Cyanide

Last Answer : B

Description : An aneplerotic reaction which sustains the availability of oxaloacetate is the carboxylation of (A) Glutamate (B) Pyruvate (C) Citrate (D) Succinate

Last Answer : B

Description : In which one of the following do the two names refer to one and the same thing ? (a) Krebs’ cycle and Calvin cycle (b) Tricarboxylic acid cycle and citric acid cycle (c) Citric acid cycle and Calvin cycle (d) Tricarboxylic acid cycle and urea cycle

Last Answer : (b) Tricarboxylic acid cycle and citric acid cycle

Description : Link between glycolysis, Krebs’ cycle and β-oxidation of fatty acid or carbohydrate and fat metabolism is (a) oxaloacetic acid (b) succinic acid (c) citric acid (d) acetyl CoA.

Last Answer : (d) acetyl CoA.

Description : All of the following compounds are intermediates of TCA cycle except (A) Maleate (B) Pyruvate (C) Oxaloacetate (D) Fumarate

Last Answer : Answer : B

Description : Before pyruvic acid enters the TCA cycle it must be converted to (A) Acetyl CoA (B) Lactate (C) α-ketoglutarate (D) Citrate

Last Answer : A

Description : An allosteric enzyme responsible for controlling the rate of T.C.A cycle is (A) Malate dehydrogenase (B) Isocitrate dehydrogenase (C) Fumarase (D) Aconitase

Last Answer : B

Description : The pH of body fluids is stabilized by buffer systems. The compound which will be the most effective buffer at physiologic pH is (A) Na2HPO4 pKa = 12.32 (B) Na2HPO4 pKa=7.21 (C) NH4OH pKa = 7.24 (D) Citric acid pKa = 3.09

Last Answer : Answer : B

Description : Substrate-linked phosphorylation occurs in (A) Glycolytic pathway(B) Citric acid cycle (C) Both (A) and (B) (D) None of these

Last Answer : Answer : C

Description : In citric acid cycle, NAD is reduced in (A) One reactions (B) Two reactions (C) Three reactions (D) Four reactions

Last Answer : Answer : C

Description : The main source of reducing equivalents (NADPH) for lipogenesis is (A) Pentose phosphate pathway (B) Citric acid cycle (C) Glycolysis (D) Glycogenolysis

Last Answer : Answer : A

Description : The number of ATP molecules generated for each turn of the citric acid cycle is (A) 8 (B) 12 (C) 24 (D) 38

Last Answer : Answer : B

Description : The enzyme -ketoglutarate dehydrogenase in the citric acid cycle requires (A) Lipoate (B) Folate (C) Pyridoxine (D) Inositol

Last Answer : Answer : A

Description : If all the enzymes, intermediates and cofactors of the citric acid cycle as well as an excess of the starting substrate acetylCoA are present and functional in an organelle free solution at the appropriate ... oxygen (B) Half life of enzyme (C) Turnover of intermediates (D) Reduction of cofactors

Last Answer : Answer : D

Description : The reaction catalysed by α-ketoglutarate dehydrogenase in the citric acid cycle requires (A) NAD (B) NADP (C) ADP (D) ATP

Last Answer : Answer : A

Description : The enzymes of the citric acid cycle are located in (A) Mitochondrial matrix (B) Extramitochondrial soluble fraction of the cell (C) Nucleus (D) Endoplasmic reticulum

Last Answer : Answer : A

Description : Most major metabolic pathways are considered mainly either anabolic or catabolic. Which of the following pathway is most correctly considered to be amphibolic? (A) Citric acid cycle (B) Gluconeogenesis (C) Lipolysis (D) Glycolysis

Last Answer : Answer : A

Description : NAD is required as a conenzyme in (A) Citric acid cycle (B) HMP shunt (C) β-Oxidation of fatty acids (D) Both (A) and (C)

Last Answer : Answer : D

Description : NADP is required as a coenzyme in (A) Glycolysis (B) Citric acid cycle (C) HMP shunt (D) Gluconeogenesis

Last Answer : Answer : C