A telephone cable has following primary constants per loop kilometer ,R=30Ω, L=20mH,C=0.06µF,G=0.If the applied signal has an angular frequency of 5000 rad/sec.., Determine (i) Characteristics impedence (ii) Attenuation constant

1 Answer

Answer :

A telephone cable has following primary constants per loop kilometer ,R=30Ω, L=20mH,C=0.06µF,G=0.If the applied signal has an angular frequency of 5000 rad/sec.., Determine (i) Characteristics impedence (ii) Attenuation constant

image

image

Related questions

Description : Calculate the characteristics impedance for a transmission line having L=0.5 mH/Km, C=0.08 µF and negligible R and G.

Last Answer : L=0.5 mH/Km C=0.08 µF

Description : A car weighing 1000kg deflects its springs by 0.4cm under its load. Determine the natural frequency of 2 car in vertical direction take g=10N/m a) 25 rad/sec b)50 rad/sec c) 2 rad/sec d)none

Last Answer : b)50 rad/sec

Description : The parameters of Transmission line are R = 50 Ω/ km, L= 1mH/km ,C = 0.1µf/km, G = 2µV/km. calculate characteristic impedance.

Last Answer : The parameters of Transmission line are R = 50 Ω/ km, L= 1mH/km ,C = 0.1µf/km, G = 2µV/km. calculate characteristic impedance.

Description : Why should local oscillator frequency be greater than signal frequency in AM receiver? Also explain why IF has constant value?

Last Answer : Reason for LO frequency to be greater than signal frequency The local oscillator frequency (f0) is made greater than signal frequency (Fs) in radio receiver: Local oscillator frequency range is 995 ... frequency of desired signal because the IF is constant and same for all the incoming RF signal.

Description : The number of revolutions through which a pulley will rotate from rest if its angular acceleration is increased uniformly from zero to 12 rad per sec2 during 4 sec and then uniformly decreased to 0 rad per sec2 during the next 3 sec would be a.46.4 b.26.74 c.11.6 d.3.2 e.17.7

Last Answer : b. 26.74

Description : A 1 kg mass is suspended by a spring having a stiffness of 0.4 N/mm. Determine the natural frequency. A 20 rad/sec B 30 rad/sec C 20 Hz D 30 Hz

Last Answer : B 30 rad/sec

Description : Draw the structure and state applications of: i) Ferrite loop (rod) antenna ii) Horn antenna

Last Answer : Horn antenna: Application:- i) Used at microwave frequency. ii) Used in satellite tracking.  Ferrite loop antenna: Application:- In Am radio receiver to receive MW and SW band signals. In FM radio receiver

Description : Draw radiation pattern for following antenna i) Yagi-Uda antenna ii) Loop antenna iii) Dish antenna iv) Horn antenna

Last Answer : Type of antenna Radiation Patteren  Yagi-Uda antenna Loop antenna Dish antenna Horn antenna 

Description : The frequency in rad/sec of a wave with velocity of that of light and phase constant of 20 units is (in GHz) a) 6 b) 60 c) 600 d) 0.6

Last Answer : a) 6

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 43200 N/m and mass of 12 kg. A 40.22 rad/sec B 40 Hz C 60 Hz D 60 rad/sec

Last Answer : D 60 rad/sec

Description : The angular acceleration of a flywheel decreases uniformly from 8 rad/sec2 to 2 rad sec2 in 6 sec at which time its angular velocity is 42 rad/sec. The initial angular velocity was a.12 rad/sec b.24 rad/sec c.30 rad/sec d.3 rad/sec e.6 rad/sec

Last Answer : a. 12 rad/sec

Description : A spring-mass system has a natural frequency of 10 rad/sec. When the spring constant is reduced by 800 N/m, the frequency is altered by 45 percent. Find the mass and spring constant of the original system. a)11.47kg and 1147.95N/m b)8.95kg and 895.25N/m c) 7.265kg and 726.5N/m d)None

Last Answer : a)11.47kg and 1147.95N/m

Description : Define critical frequency w.r. to wave propagation.

Last Answer : Define critical frequency w.r. to wave propagation.

Description : For AM, fc =500kHz , fm = 5 kHz Determine: (i) Upper and lower sideband frequencies (ii) Bandwidth

Last Answer : Given data fc = 500KHz , fm = 5KHz USB =fc+fm USB = 500+5  =505 KHz. LSB =fc – fm LSB = 500 – 5  =495 KHz Bandwidth = 2fm .  = 2* 5 =10 KHz

Description : Compare PAM, PWM, and PPM on the basis of i. Variable characteristics ii. Bandwidth iii. Information contained in iv. Transmitted power

Last Answer : Compare PAM, PWM, and PPM on the basis of i. Variable characteristics ii. Bandwidth iii. Information contained in iv. Transmitted power

Description : Explain the following characteristics of AM radio receiver: (i) Sensitivity (ii) Selectivity.

Last Answer : Sensitivity:- The ability to amplify the weak signals is called sensitivity. It is the function of overall receiver gain. Sensitivity of radio receiver is decided by the gain of the RF IF ... perfectly the receiver is able to select the desired carrier frequency and reject other frequencies. 

Description : Explain loop antenna with neat sketch. Draw radiation pattern. State its advantages and applications.

Last Answer : Loop antenna:-The single turn coil carrying RF current through it having length less than the wavelength.   Advantages:- 1. highly directive 2. Small size Applications:- 1. For direction finding 2. In portable receivers 3. In navigation 

Description : A superheterodyne radio receiver with an IF of 455KHZ is turned to 1000KHZ. Find: (i) Image frequency (ii) Local oscillator frequency

Last Answer : Given Intermediate Frequency fi=455KHz Signal frequency =fs=1000KHz Local oscillator frequency fo=fs+fi  Fo=1000KHz+455KHz  =1455KHz Image frequency is the input frequency which produces the same intermediate frequency fsi=fs+2fi  =1000KHz+2*455KHz  =1910KHz 

Description : In a FM system, the maximum deviation is 75KHz. Find bandwidth for modulating frequency i. fm=500Hz ii. fm=5KHz iii. fm=10KHz Draw conclusion for bandwidth of FM from answer.

Last Answer : Given deviation∆=75kHz i) fm=500Hz bandwidth B.W=2(∆+fm)  =2(75k+500)=151kHz  ii). fm=5KHz bandwidth B.W=2(∆+fm)  =2(75k+5k)=160KHz iii) fm=10KHz bandwidth B.W=2(∆+fm)  =2(75k+10k)=170KHz As the modulating frequency increases bandwidth also increases.

Description : Compare ground wave and space wave propagation on the basis of: (i) Frequency range (ii) Method of propagation.

Last Answer : Compare ground wave and space wave propagation on the basis of: (i) Frequency range (ii) Method of propagation.

Description : Define: (i) Image frequency and (ii) Double spotting

Last Answer : i)Image frequency:- Image Frequency is defined as the signal frequency plus twice the intermediate frequency. It is denoted as fsi = fs+2fi Where, fs = Signal Frequency fi =intermediate frequency ... It is due to the poor front end selectivity i.e., inadequate image frequency rejection.

Description : a) For a transmission line, Find SWR and reflection coefficient R if, i. There is no reflected voltage. ii. Reflected voltage and incident voltage is equal. iii. If reflected voltage=20V and incident voltage=10V. iv. If reflected voltage=10V and incident voltage =20V.

Last Answer : reflection coefficient R=Vr/Vi i. There is no reflected voltage. i.e,Vr=0 R=0 SWR= 1+R/1-R=1 ii. Reflected voltage and incident voltage is equal. Vr=Vi; R=1 SWR= 1+R/1-R=1+1/1-1=infinity iii. If reflected ... and incident voltage =20V. Vr=10 and Vi=20 R=10/20=0.5 SWR= 1+R/1-R=1+.5/1-.5=3 

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 25.62 rad/sec B 20.78 rad/sec C 14.4 rad/sec D 15.33 rad/sec

Last Answer : A 25.62 rad/sec

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 21 rad/sec B 25.62 rad/sec C 20.22 Hz D 3.15 Hz

Last Answer : B 25.62 rad/sec

Description : A spring mass system has time period of oscillation of 0.25 sec. What will be the natural frequency of the system? A 1 Hz B 2 rad sec C 4 rad/sec D 4 Hz

Last Answer : D 4 Hz

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and A natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. ( A )25.62 rad/sec ( B )20.78 rad/sec ( C )14.4 rad/sec ( D )15.33 rad/sec

Last Answer : ( A )25.62 rad/sec

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequ the system is 30 rad/sec which consists of machine supported on springs and dashpots. a. 25.62 rad/secb. 20.78 rad/sec c. 14.4 rad/sec d. 15.33 rad/sec

Last Answer : a. 25.62 rad/sec

Description : Explain the demodulation of AM signal using diode detector.

Last Answer : Simple diode detector:- Explanation:- This is essentially just a half wave rectifier which charges a capacitor to a voltage nearly to the peak voltage of the incoming AM waveform s(t). ... detector output is proportional to the signal strength. Stronger Am signal higher is the dc AGC voltage.

Description : Define: Base band signal with one example.

Last Answer : The electrical equivalent of the original information signal is known as the Baseband signal. Example:-The information or the input signal to a communication system can be analog i.e., sound, picture or it can be digital e.g. the computer data.

Description : The distance between two stations M and N is L kilometers. All frames are K bits long. The propagation delay per kilometer is t seconds. Let R bits/second be the channel capacity. Assuming that processing ... maximum utilization, when the sliding window protocol used is: a. A b. B c. C d. D

Last Answer : c. C

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : In spring mass experiment, the natural frequency of 10 kg mass was found to be 12 rad/sec. the stiffness of the spring is A. 800 N/m B. 1200 N/m C. 1440 N/m D. 2000 N/m

Last Answer : C. 1440 N/m

Description : The unit of natural frequency is A. Rad/sec B. Hz C. Both D. No unit

Last Answer : C. Both

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : A super heterodyne AM receiver is tuned to a station operating at 1200 KHz .Find local oscillator frequency and image frequency.

Last Answer : A super heterodyne AM receiver is tuned to a station operating at 1200 KHz Intermediate frequency is 455KHz. IF frequency=f0-fs Local oscillator frequency is f0=IF +fs=455K+1200K=1655kHz The image frequency which gives the same IF is f0+2*IF=2110KHz

Description : Define: 1)Frequency 2)Bandwidth 3)Wavelength 4)Time period

Last Answer : Frequency: Frequency is the number of cycles per second. Bandwidth: A range of frequencies within a given band, in particular that used for transmitting a signal. Wavelength: Wavelength can be defined as ... for one complete cycle of vibration to pass a given point.  OR Time period=1/frequency

Description : State the IF frequency and bandwidth of FM receiver.

Last Answer : IF for FM receiver: 10.7 MHz. Bandwidth of FM receiver:88MHz to 108 MHz

Description : State the frequency range for audio frequency and voice frequency.

Last Answer : The generally accepted standard range of audible frequencies is 20 to 20,000 Hz, The usable voice frequency band ranges from approximately 300 Hz to 3400 Hz.

Description : Explain any four different frequency bands and give their two applications of each.

Last Answer : Explain any four different frequency bands and give their two applications of each.

Description : Write down different frequencies for following(frequency ranges). (1) Voice frequency (2) High frequency (3) IR frequency (4) Visible frequency(light)

Last Answer : Sr. No Frequency Range 1 Voice Frequency 300 Hz to 3kHz 2 High Frequency  3 MHz to 30 MHz 3 IR Frequency 30 THz to 430 THz 4 Visible Spectrum (light) 375 THz to 750 THz

Description : Draw amplitude modulated waveform in time domain and frequency domain with proper labeling.

Last Answer : AM in Time domain  AM in frequency domain

Description : Define the terms: 1) Maximum usable frequency 2) Fading

Last Answer : 1)Maximum usable frequency:- Maximum usable frequency is defined as the limiting frequency ,when the angle of incidence is other than the normal . OR The highest frequency that can be used for sky ... which left the same source but arrived at the destination by different paths is known as fading.

Description : Define the following terms related to antennas; (i) Antenna resistance (ii) Directivity (iii) Antenna gain (iv) Power density

Last Answer : Antenna Resistance - The resistance of an antenna has two components: 1. Its radiation resistance due to conversion of power into electromagnetic waves 2. The resistance due to actual losses in the ... the transmitter power divided by the surface area of a sphere (4πR2) at that distance.

Description : Write one application of following antenna i. Rectangular antenna ii. Dish antenna iii. Yagi-Uda antenna iv. Horn antenna 

Last Answer : i. Rectangular antenna is used in direction finding in portable recievers. ii. Dish antenna is used to transmit and receive signal from satellite. iii. Yagi-Uda antenna is used in HF and VHF range as a TV receiving antenna. iv. Horn antenna is used in satellite tracking.

Description : Describe with respect to antenna (i) radiation pattern (ii) directive gain (iii) power gam (iv) polarization

Last Answer : (i) Radiation pattern:-A graph or diagram which tells us about the manner in which an antenna radiates more power in different directions is known as the radiation patteren of antenna.  ( ... as the direction of the electric vector in the electromagnetic wave radiated by the transmitting antenna. 

Description : Differentiate between AM and FM on the basis of: (i) Definition (ii) Bandwidth (iii) Modulation Index (iv) Application

Last Answer : Compare AM and FM on the basis of i)Definition ii)Bandwidth iii) Wave propogation iv)Number of sidebands

Description : Define the following terms: (i) Polarization (ii) Antenna gain (iii)Antenna resistance (iv)Directivity

Last Answer : i) Polarization:- It is defined as the direction of electric field vector in the EM wave radiated by the transmitting antenna. ii) Antenna Gain:- Antenna gain is defined as the ratio of ... in only one direction in which the radiation is maximum. That is directivity = Max. directive gain

Description : For a transmission line, the incident voltage. Ei = 6V and Er =2V ,Calculate: (i) Reflection Coefficient (ii) SWR

Last Answer : Reflection Coefficient(K) = Er / Ei  = 2V / 6V  K = 0.333 SWR = 1+K / 1- K  = 1+0.333 / 1-0.333  = 1.333 / 0.667 SWR= 1.998

Description : Draw the radiation pattern for Dipole antenna: (i) Half wave dipole (ii) Folded dipole.

Last Answer : The radiation pattern for Half wave dipole antenna The radiation pattern for Folded dipole antenna.