24 cells of emf `1.5 V` each having internal resistance of 1 ohm are connected to an external resistance of `1.5` ohms. To get maximum current,

1 Answer

Answer :

24 cells of emf `1.5 V` each having internal resistance of 1 ohm are connected to an external ... in series and 4 such rows are connected in parallel

Related questions

Description : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance `2 Omega` so as to send maximum current through an external

Last Answer : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance ` ... current through an external resistance of `8 Omega`.

Description : Four cells, each of emf E and internal resistance r, are connected in series across an external resistance reverse. Then, the current in the external

Last Answer : Four cells, each of emf E and internal resistance r, are connected in series across an external resistance reverse. Then, ... (3r+R)` D. `(2E)/(3r+R)`

Description : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in series and (b) all in paralle. Calculate the current sent in

Last Answer : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in ... each case through a wire of resistance `0.8 Omega`.

Description : Two batteries A and B each of e.m.f. 2 V are connected in series to an external resistance R = 1 ohm . If the internal resistance of battery A is 1.9

Last Answer : Two batteries A and B each of e.m.f. 2 V are connected in series to an external resistance R = 1 ohm . If the ... V B. `3.8` V C. zero D. `4.8` V

Description : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to an external resistor of `7.4 Omega`. Calculate the cur

Last Answer : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to ... 7.4 Omega`. Calculate the current in the circuit.

Description : Two cells, having the same emf, are connected in series through an external resistance `R`. Cells have internal resistance `r_(1)` and `r_(2) (r_(1) g

Last Answer : Two cells, having the same emf, are connected in series through an external resistance `R`. Cells have internal resistance ... D. `(r_(1)+r_(2))/(2)`

Description : There are n cells, each of emf E and internal resistance r, connected in series with an external resistance R. One of the cells is wrongly connected,

Last Answer : There are n cells, each of emf E and internal resistance r, connected in series with an external resistance R. One of the ... D. `((n-2)E)/((n-2)r+R)`

Description : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. This combination is connected to a `5 Omega` resistor

Last Answer : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. ... what is the internal resistance of each cell ?

Description : The maximum power dissipated in an external resistance R, when connected to a cell of emf E and internal resistance r, will be

Last Answer : The maximum power dissipated in an external resistance R, when connected to a cell of emf E and internal resistance r, ... /(3r)` D. `(E^(2))/(4r)`

Description : A battery of four cells in series, each having an emf of `1.14` V and an internal resistance of `2Omega` is to be used to charge a small 2 V accumulat

Last Answer : A battery of four cells in series, each having an emf of `1.14` V and an internal resistance of `2Omega` is to be ... B. `0.2A` C. `0.3A` D. `0.45A`

Description : Two cells of emf of 1.5 V and 2.0 V having internal resistances of `1 Omega` and `2 Omega`, respectively are connected in parallel so as to send curre

Last Answer : Two cells of emf of 1.5 V and 2.0 V having internal resistances of `1 Omega` and `2 Omega` ... of `5 Omega`. Find the current in the external circuit.

Description : A cell of emf E and internal resistance r is connected in series with an external resistance nr. Than what will be the ratio of the terminal potential

Last Answer : A cell of emf E and internal resistance r is connected in series with an external resistance nr. Than what will be the ... /(n + 1)` D. `(n + 1)/n`

Description : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9.5 Omega`. How many electrons pass through a cross-sect

Last Answer : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9. ... a cross-section of the resistance in 1 second ?

Description : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance `1 Omega` drops to 5.8 V when connected across an exte

Last Answer : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance ... resistor . Find the resistance of the external res

Description : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The resistance of the wire is `3 Omega`. The additional

Last Answer : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The ... B. `47Omega` C. `57Omega` D. `35Omega`

Description : A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the p.d. across the voltmeter, tha

Last Answer : A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the ... B. `3.5 V` C. 5 V D. 6 V

Description : Which one of the following is the advantage of connecting two dry cells in parallel instead of in series? Is it because the parallel arrangement: w) gives twice the EMF of one dry cell x) has no ... circuit half as fast as would a single cell z) has half the internal resistance of a single cell

Last Answer : ANSWER: Z -- HAS HALF THE INTERNAL RESISTANCE OF A SINGLE CELL 

Description : A transformer has a turns ratio of two to one. If a 100 ohm resistor is connected on the high side, its resistance as measured on the low side would be: w) 25 ohms x) 50 ohms y) 100 ohms z) 400 ohms

Last Answer : ANSWER: W -- 25 OHMS

Description : Four identical cells of emf `epsilon` and internal resistance r are to be connected in series. Suppose, if one of the cell is connected wrongly, then

Last Answer : Four identical cells of emf `epsilon` and internal resistance r are to be connected in series. Suppose, if one of ... and 4r C. 2E and 2r D. 4E and 2r

Description : The potential drop between the terminals of a battery is equal to the battery's EMF when: w) no current is drawn from the battery x) a very large current is drawn from the battery y) the internal resistance of the battery is very large z) the resistance in the external circuit is small 

Last Answer : ANSWER: W -- NO CURRENT IS DRAWN FROM THE BATTERY

Description : A battery of emf E has an internal resistance r. A variable resistacne R is connected to the terminals of the battery. A current `i` is drawn from the

Last Answer : A battery of emf E has an internal resistance r. A variable resistacne R is connected to the terminals of ... infinity, `(E)/(r)`, V approaches E

Description : A neon flashlight cell with an emf of 1.5V gives a current of 15A when connected directly to an ammeter of resistance 0.04?. Internal resistance of the cell is a. 0.0004? b. 0.06? c. 0.10? d. 0.13?

Last Answer : b. 0.06?

Description : A series combination of resistance 100 ohm and capacitance 50µf is connected in series to a 230 V, 50HZ supply. Calculate (i) Capacitive reactance (ii) Current (iii) Power factor (iv) Power consumed 

Last Answer : For RC series circuit

Description : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of the current drawn from the cell is

Last Answer : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of ... A. `3A` B. `2A` C. `5A` D. `1A`

Description : A resistance of 3.3 M ohms is connected across a 500 V source. The resulting current is approximately? A.15.1 μA B.151 μA C.66 mA D.660 mA

Last Answer : A

Description : Two resistors of resistances `2Omega` and `6Omega` are connected in parallel. This combination is then connected to a battery of emf 2 V and internal

Last Answer : Two resistors of resistances `2Omega` and `6Omega` are connected in parallel. This combination is then connected to a ... . `(4)/(17)A` D. `1 A`

Description : A cell which has an emf `1.5` V is connectedin series with an external resistance of `10Omega`. If the potential difference across the cell is `1.25`

Last Answer : A cell which has an emf `1.5` V is connectedin series with an external resistance of `10Omega`. If the potential ... `0.25` C. `1.5` D. `0.3`

Description : If E is the emf of a cell of internal resistance r and external resistance R, then potential difference across R is given as

Last Answer : If E is the emf of a cell of internal resistance r and external resistance R, then potential difference across R is given ... /R)` D. `V=E//(1+R//r)`

Description : A d.c. source has an open circuit voltage of 30 V and an internal resistance of 1.5 Ohm. A resistive load is connected to the source. Maximum power dissipated in the load is (A) 300 W (B) 150 W (C) 45 W (D) 20 W

Last Answer : A d.c. source has an open circuit voltage of 30 V and an internal resistance of 1.5 Ohm. A resistive load is connected to the source. Maximum power dissipated in the load is 150 W

Description : When two batteries are connected in parallel, it should be ensured that A. They have same emf B. They have same make C. They have same ampere hour capacity D. They have identical internal resistance

Last Answer : A. They have same emf

Description : A 35 V dc supply is connected across a resistance of 600 ohm in series with an unknown resistance R. A voltmeter having a resistance of 1.2 kOhm is connected across 600 ohm resistances and reads 5 V. The value of resistance R shall be:

Last Answer : A 35 V dc supply is connected across a resistance of 600 ohm in series with an unknown resistance R. A voltmeter having a resistance of 1.2 kOhm is connected across 600 ohm resistances and reads 5 V. The value of resistance R shall be: 2.4 kOhm

Description : As shown in the figure, 1 ohm resistance is connected across a source that has a load line v + i = 100. The current through the resistance is A) 25 A B) 50 A C) 100 A D) 200A

Last Answer : As shown in the figure, 1 ohm resistance is connected across a source that has a load line v + i = 100. The current through the resistance is 50 A

Description : A coil of inductance 240 mH and resistance 75 Ohm is connected in parallel with a capacitor across a 30 V, variable frequency supply. The current drawn by the circuit is found to be minimum when the supply frequency is 1 kHz. The ... (A) 40, 400 Hz (B) 10, 100 Hz (C) 20, 50 Hz (D) 50, 20 Hz

Last Answer : A coil of inductance 240 mH and resistance 75 Ohm is connected in parallel with a capacitor across a 30 V, variable frequency supply. The current drawn by the circuit is found to be minimum ... supply frequency is 1 kHz. The approximate values of Q-factor and bandwidth are, respectively 20, 50 Hz

Description : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential difference is measured by a voltmeter of resistance `1000 Omeg

Last Answer : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential ... percentage error in the reading of emf shown by voltmeter.

Description : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of `5R//11`. If the ammeter reads 2.0 A, what is the va

Last Answer : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of ` ... ammeter reads 2.0 A, what is the value of R ?

Description : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V and internal resistance 10 `Omega`

Last Answer : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V ... power, is A. 6 B. 4 C. 2 D. 8

Description : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the current supplied by the battery ?

Last Answer : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the ... 2 A` C. `1.8 A` D. `0.3 A`

Description : Two resistance wires on joining in parallel the resultant resistance is ohms `(6)/(5)` ohms. One of the wire breaks, the effective resistance is 2 ohm

Last Answer : Two resistance wires on joining in parallel the resultant resistance is ohms `(6)/(5)` ohms. One of the wire ... ` C. `(6)/(5)Omega` D. `3Omega`

Last Answer : If four 90 ohm resistors are connected in series across an 18 V source, the current equals 50 mA.

Description : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance of `30 Omega`. Given that the emf of each cell

Last Answer : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance ... .5 V and internal resistance `1.0 Omega`.

Description : Prior to taking a resistance reading with a volt-ohm-milliammeter, the 'zero' setting must be adjusted. After clipping the two leads together, you find the adjustment knob will not return the pointer ... range setting B. weak batteries C. a faulty zero ohms knob D. a faulty meter movement

Last Answer : Answer: B

Description : If PN junction is forward biased its resistance is (a) Zero (b) Infinity (c) A few ohm (d) A few kilo ohms

Last Answer : c) A few ohm

Description : A circuit has a resistance of 200 ohms. The resistance of the circuit can be reduced to 120 ohms by adding which of the following to the circuit. w) 80 ohm resistor in series x) 150 ohm resistor in parallel y) 240 ohm resistor in series z) 300 ohm resistor in parallel

Last Answer : ANSWER: Z -- 300 OHM RESISTOR IN PARALLEL

Last Answer : A metal resistor has resistance of 10 ohm at 0°C and 11 ohms at 160°C, the temperature coefficient is 0.000625 /°C.

Description : If the energy is supplied from a source, whose resistance is 1 ohm, to a load of 100 ohms the source will be?

Last Answer : If the energy is supplied from a source, whose resistance is 1 ohm, to a load of 100 ohms the source will be a voltage source.

Description : The terminal voltage of a cell supplying energy to a circuit is usually less than its emf because of the cell's w) size x) internal resistance y) mass z) energy

Last Answer : ANSWER: X -- INTERNAL RESISTANCE

Description : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a resistance `R` and a cell of emf `2V` of negli

Last Answer : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a ... Omega` C. `790 Omega` D. `840 Omega`

Description : The `n` rows each containinig `m` cells in series are joined parallel. Maximum current is taken from this combination across jan external resistance o

Last Answer : The `n` rows each containinig `m` cells in series are joined parallel. Maximum current is taken from this combination ... n = 2 D. m = 2, n = 12

Description : When used for taking resistance measurements, a volt-ohm-milliammeter is normally powered by _____________. A. a hand cranked generator B. internal storage batteries C. the current in the circuit being tested D. a step down transformer

Last Answer : Answer: B