Under what condition, the current passing through the resistance R can be increased by short - circuiting the battery of emf `E_2` The internal resist

1 Answer

Answer :

Under what condition, the current passing through the resistance R can be increased by short - circuiting the battery of ... (1)r_(2)gtE_(2)(R+r_(1))`

Related questions

Description : In the Wheatstone network given, `P=10 Omega, Q=20Omega, R=15Omega, S=30Omega`, the current passing through the battery (of negligible internal resist

Last Answer : In the Wheatstone network given, `P=10 Omega, Q=20Omega, R=15Omega, S=30Omega`, the current passing through the ... zero C. `0.18 A` D. `0.72 A`

Description : A battery of emf E has an internal resistance r. A variable resistacne R is connected to the terminals of the battery. A current `i` is drawn from the

Last Answer : A battery of emf E has an internal resistance r. A variable resistacne R is connected to the terminals of ... infinity, `(E)/(r)`, V approaches E

Description : The potential drop between the terminals of a battery is equal to the battery's EMF when: w) no current is drawn from the battery x) a very large current is drawn from the battery y) the internal resistance of the battery is very large z) the resistance in the external circuit is smallĀ 

Last Answer : ANSWER: W -- NO CURRENT IS DRAWN FROM THE BATTERY

Description : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9.5 Omega`. How many electrons pass through a cross-sect

Last Answer : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9. ... a cross-section of the resistance in 1 second ?

Description : Four cells, each of emf E and internal resistance r, are connected in series across an external resistance reverse. Then, the current in the external

Last Answer : Four cells, each of emf E and internal resistance r, are connected in series across an external resistance reverse. Then, ... (3r+R)` D. `(2E)/(3r+R)`

Description : Two cells, having the same emf, are connected in series through an external resistance `R`. Cells have internal resistance `r_(1)` and `r_(2) (r_(1) g

Last Answer : Two cells, having the same emf, are connected in series through an external resistance `R`. Cells have internal resistance ... D. `(r_(1)+r_(2))/(2)`

Description : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential difference is measured by a voltmeter of resistance `1000 Omeg

Last Answer : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential ... percentage error in the reading of emf shown by voltmeter.

Description : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance `1 Omega` drops to 5.8 V when connected across an exte

Last Answer : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance ... resistor . Find the resistance of the external res

Description : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of `5R//11`. If the ammeter reads 2.0 A, what is the va

Last Answer : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of ` ... ammeter reads 2.0 A, what is the value of R ?

Description : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V and internal resistance 10 `Omega`

Last Answer : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V ... power, is A. 6 B. 4 C. 2 D. 8

Description : A battery of four cells in series, each having an emf of `1.14` V and an internal resistance of `2Omega` is to be used to charge a small 2 V accumulat

Last Answer : A battery of four cells in series, each having an emf of `1.14` V and an internal resistance of `2Omega` is to be ... B. `0.2A` C. `0.3A` D. `0.45A`

Description : Terminal potential difference of a battery is greater than its emf when a. the internal resistance of battery is infinite b. the internal resistance of battery is zero c. the battery is charged d. the battery is discharged

Last Answer : c. the battery is charged

Description : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance `2 Omega` so as to send maximum current through an external

Last Answer : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance ` ... current through an external resistance of `8 Omega`.

Description : The potenital difference between the terminals of a 6.0 V battery is 7.2 V when it is being charged by a current of 2.0 A. What is the internal resist

Last Answer : The potenital difference between the terminals of a 6.0 V battery is 7.2 V when it is being ... A. What is the internal resistance of the resistor.

Description : The function of fuse in an electrical circuit is (a) avoid electric shocks (b) regulate the flow of current (c) break the circuit in case of overloading or short circuiting (d) switch off current

Last Answer : Ans:(c)

Description : A cell of emf E and internal resistance r is connected in series with an external resistance nr. Than what will be the ratio of the terminal potential

Last Answer : A cell of emf E and internal resistance r is connected in series with an external resistance nr. Than what will be the ... /(n + 1)` D. `(n + 1)/n`

Description : Four identical cells of emf `epsilon` and internal resistance r are to be connected in series. Suppose, if one of the cell is connected wrongly, then

Last Answer : Four identical cells of emf `epsilon` and internal resistance r are to be connected in series. Suppose, if one of ... and 4r C. 2E and 2r D. 4E and 2r

Description : The maximum power dissipated in an external resistance R, when connected to a cell of emf E and internal resistance r, will be

Last Answer : The maximum power dissipated in an external resistance R, when connected to a cell of emf E and internal resistance r, ... /(3r)` D. `(E^(2))/(4r)`

Description : There are n cells, each of emf E and internal resistance r, connected in series with an external resistance R. One of the cells is wrongly connected,

Last Answer : There are n cells, each of emf E and internal resistance r, connected in series with an external resistance R. One of the ... D. `((n-2)E)/((n-2)r+R)`

Description : If E is the emf of a cell of internal resistance r and external resistance R, then potential difference across R is given as

Last Answer : If E is the emf of a cell of internal resistance r and external resistance R, then potential difference across R is given ... /R)` D. `V=E//(1+R//r)`

Description : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the current supplied by the battery ?

Last Answer : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the ... 2 A` C. `1.8 A` D. `0.3 A`

Description : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in series and (b) all in paralle. Calculate the current sent in

Last Answer : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in ... each case through a wire of resistance `0.8 Omega`.

Description : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of the current drawn from the cell is

Last Answer : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of ... A. `3A` B. `2A` C. `5A` D. `1A`

Description : 24 cells of emf `1.5 V` each having internal resistance of 1 ohm are connected to an external resistance of `1.5` ohms. To get maximum current,

Last Answer : 24 cells of emf `1.5 V` each having internal resistance of 1 ohm are connected to an external ... in series and 4 such rows are connected in parallel

Description : A neon flashlight cell with an emf of 1.5V gives a current of 15A when connected directly to an ammeter of resistance 0.04?. Internal resistance of the cell is a. 0.0004? b. 0.06? c. 0.10? d. 0.13?

Last Answer : b. 0.06?

Description : When one turns off the car with out powering down the a/c, fan, and radio does it contribute to short circuiting?

Last Answer : As long as the car is operating correctly, none of these actions will cause any harm. Manufacturers do not expect you to power down everything before shutting off the car.

Description : An electrical appliance is earthed to 1. Protect the appliance against any damage 2. Prevent electric shocks 3. Avoid short-circuiting Which of the above is/are correct? (a) 1 only (b) 2 only (c) 1 and 2 (d) 2 and 3

Last Answer : Ans:(b)

Description : An open occurring within the field rheostat of an AC generator can be detected by short circuiting its terminals and observing a ____________. A. negative deflection of the wattmeter pointer B. ... of the wattmeter pointer C. buildup of alternator voltage D. low, but constant alternator voltage

Last Answer : Answer: C

Description : Which of the following is a characteristic of fractional horsepower repulsion start motors? A. They start with a rotating stator field. B. The short circuiting ring is removed from the commutator while ... brushes are removed from the commutator while starting. D. They have a low starting torque.

Last Answer : Answer: B

Description : Before servicing the device indicated as 'A' in panels #1 and #3 of the illustration, the device labeled 'CT' must __________. EL-0003 A. have the disconnected leads taped to prevent ... D. have one lead grounded to discharge static electricity for the prevention of damage to electronic components

Last Answer : Answer: C

Description : Temporary repairs to an open DC propulsion armature coil can be made by _____________. A. connecting the coil ends directly to a pair of negative brushes B. disconnecting coil ends, insulating ... C. grounding the coil ends and short circuiting the commutator bar D. removing the sparking brushes

Last Answer : Answer: B

Description : In testing a three-phase delta winding for an open circuit using a megohmmeter, you must ______________. A. test each phase with all connections intact B. measure the voltage across the open ... groups to avoid short circuiting D. open the delta-connections to avoid shunting the phase being tested

Last Answer : Answer: D

Description : [75] Two transformers are connected in parallel. These transformers do not have equal percentage impedance which results A. Short-circuiting of the secondaries B. Power factor of one of the ... have negligible core losses D. Loading of the transformers not in proportion to their kVA ratings.

Last Answer : D. Loading of the transformers not in proportion to their kVA ratings

Description : Two resistors of resistances `2Omega` and `6Omega` are connected in parallel. This combination is then connected to a battery of emf 2 V and internal

Last Answer : Two resistors of resistances `2Omega` and `6Omega` are connected in parallel. This combination is then connected to a ... . `(4)/(17)A` D. `1 A`

Description : A coil =of inductance `L=50muH` and resistance =`0.5Omega` is connected to a battery of emf=5A. A resistance of `10Omega` is connected parallel to the

Last Answer : A coil =of inductance `L=50muH` and resistance =`0.5Omega` is connected to a battery of emf=5A. A resistance ... is (0.02)x in mJ. Find valuie of x.

Description : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. This combination is connected to a `5 Omega` resistor

Last Answer : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. ... what is the internal resistance of each cell ?

Description : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to an external resistor of `7.4 Omega`. Calculate the cur

Last Answer : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to ... 7.4 Omega`. Calculate the current in the circuit.

Description : A circuit consists of three bateries of emf `E_(1) = 1V, E_(2)=2V` and `E_(3)=3V` and internal resistance `1Omega, 2Omega` and `1Omega` respectively w

Last Answer : A circuit consists of three bateries of emf `E_(1) = 1V, E_(2)=2V` and `E_(3)=3V` and internal resistance `1Omega, ... ` B. `2.0V` C. `2.2V` D. `3.0V`

Description : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The resistance of the wire is `3 Omega`. The additional

Last Answer : A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The ... B. `47Omega` C. `57Omega` D. `35Omega`

Description : A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the p.d. across the voltmeter, tha

Last Answer : A voltmeter of resistance `998 Omega` is connected across a cell of emf 2 V and internal resistance `2 Omega`. Find the ... B. `3.5 V` C. 5 V D. 6 V

Description : When two batteries are connected in parallel, it should be ensured that A. They have same emf B. They have same make C. They have same ampere hour capacity D. They have identical internal resistance

Last Answer : A. They have same emf

Description : Which one of the following is the advantage of connecting two dry cells in parallel instead of in series? Is it because the parallel arrangement: w) gives twice the EMF of one dry cell x) has no ... circuit half as fast as would a single cell z) has half the internal resistance of a single cell

Last Answer : ANSWER: Z -- HAS HALF THE INTERNAL RESISTANCE OF A SINGLE CELLĀ 

Description : The terminal voltage of a cell supplying energy to a circuit is usually less than its emf because of the cell's w) size x) internal resistance y) mass z) energy

Last Answer : ANSWER: X -- INTERNAL RESISTANCE

Description : Two batteries A and B each of e.m.f. 2 V are connected in series to an external resistance R = 1 ohm . If the internal resistance of battery A is 1.9

Last Answer : Two batteries A and B each of e.m.f. 2 V are connected in series to an external resistance R = 1 ohm . If the ... V B. `3.8` V C. zero D. `4.8` V

Description : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance of `30 Omega`. Given that the emf of each cell

Last Answer : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance ... .5 V and internal resistance `1.0 Omega`.

Description : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a resistance `R` and a cell of emf `2V` of negli

Last Answer : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a ... Omega` C. `790 Omega` D. `840 Omega`

Description : The charge of a lead-acid battery can be restored by ______. A. passing an alternating electric current through the cell B. passing a direct electric current through the cell C. adding acid to the electrolyte D. all of the above

Last Answer : Answer: B

Description : Which of the following statements describes what will occur if the motor shown in the illustration is required to carry 150% of full load? EL-0056 A. The primary counter emf will be increased. B. ... slip will decrease. D. The slip value, stator current curve, and torque curve will all coincide.

Last Answer : Answer: B

Description : Nichrome wire is used in an electric heater because _______. (1) It has high resistance (2) It has high melting point (3) It can resist a current upto approx 5 amperes (4) For all of the above reasons

Last Answer : (4) For all of the above reasons