If point A (0,2) is equidistant from the point B (3, p)and C (p, 5), find p. -Maths 9th

1 Answer

Answer :

 Given, AB=AC (AB)2=(AC)2 Distance between two points=(x2​−x1​)2+(y2​−y1​)2​(AB)2=(AC)2⟹(0−3)2+(2−p)2=(0−p)2+(2−5)2 9+4+p2−4p=p2+9 p=1 Distance=(0−3)2+(2−1)2​Distance=10​

Related questions

Description : The point P is equidistant from A(1, 3), B(–3, 5) and C(5, –1). Then PB is equal to : -Maths 9th

Last Answer : (b) (2, 2)Let the point be P whose abscissa = ordinate = a. ∴ P ≡ (a, a) Given, PA = PB ⇒ (a + 1)2 + a2 = a2 + (a – 5)2 ⇒ 2a2 + 2a + 1 = 2a2 – 10a + 25 ⇒ 12a = 24 ⇒ a = 2. ∴ The point is (2, 2).

Description : The point whose abscissa is equal to its ordinate and which is equidistant from A(–1, 0) and B(0, 5) is -Maths 9th

Last Answer : Putting \(x\) = 0 in equation of one of the lines say 9\(x\) + 40y -20 = 0, we get y = \(rac{1}{2}\)∴ A point on 9\(x\) + 40y - 20 = 0 is \(\big(0,rac{1}{2}\big)\)∴ Distance of \(\big(0,rac{1}{2}\big) ... imesrac{1}{2}+21\big|}{\sqrt{9^2+40^2}}\) = \(rac{|41|}{\sqrt{1681}}\) = \(rac{41}{41}\) = 1.

Description : If the points (2, 1) and (1, – 2) are equidistant from the point (x, y), show that x + 3y = 0. -Maths 9th

Last Answer : (a) The distance d between any two points say P(x1, y1) and Q(x2, y2) is given by:d = \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)⇒ d2 = (x2 - x1)2 + (y2 - y1)2 ⇒ d = \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)( ... distance of a point P(x1, y1) form the origin= \(\sqrt{(x_2-0)^2+(y_2-0)^2}\) = \(\sqrt{x^2_1+y^2_1}\)

Description : Point on Y-axis is equidistant from 5,4 and - 2,3 is -Maths 9th

Last Answer : NEED ANSWER

Description : Point on Y-axis is equidistant from 5,4 and - 2,3 is -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : The locus of a point in rhombus ABCD which is equidistant from A and C is -Maths 9th

Last Answer : answer:

Description : If M(x, y) is equidistant from A(a + b, b – a) and B(a – b, a + b), then -Maths 9th

Last Answer : (b)10 + \(5\sqrt2\)Perimeter of ΔABC = AB + BC + CA= \(\sqrt{(0+4)^2+(-1-2)^2}\) + \(\sqrt{(3-0)^2+(3+1)^2}\) + \(\sqrt{(3-4)^2+(3-2)^2}\)= \(\sqrt{16+9}\) + \(\sqrt{9+16}\) +\(\sqrt{49+1}\)= \(\sqrt{25}\) + \(\sqrt{25}\) + \(\sqrt{50}\) = 5 + 5 + \(5\sqrt2\) = 10 + \(5\sqrt2\)

Description : Find a point on the y-axis equidistant from (-5, 2) and (9, -2). -Maths 10th

Last Answer : answer:

Description : Plot the points P(1, 0), Q(4, 0) and 5(1, 3). Find the coordinates of the point R such that PQRS is a square. -Maths 9th

Last Answer : see the below answer

Description : Plot the points P(1, 0), Q(4, 0) and 5(1, 3). Find the coordinates of the point R such that PQRS is a square. -Maths 9th

Last Answer : see the below answer

Description : If the perpendicular distance of a point P from the X-axis is 5 units and the foot of the perpendicular lies on the negative direction of X-axis, then the point P has -Maths 9th

Last Answer : (d) We know that, the perpendicular distance of a point from the X-axis gives y-coordinate of that point. Here, foot of perpendicular lies on the negative direction of X-axis, so perpendicular distance can be measure in II quadrant or III quadrant. Hence, the point P has y-coordinate = 5 or -5.

Description : If the perpendicular distance of a point P from the X-axis is 5 units and the foot of the perpendicular lies on the negative direction of X-axis, then the point P has -Maths 9th

Last Answer : (d) We know that, the perpendicular distance of a point from the X-axis gives y-coordinate of that point. Here, foot of perpendicular lies on the negative direction of X-axis, so perpendicular distance can be measure in II quadrant or III quadrant. Hence, the point P has y-coordinate = 5 or -5.

Description : Find the perpendicular distance of the point P(5, 7) from the y-axis. -Maths 9th

Last Answer : Solution :- 5

Description : WXYZ is a square of side length 30. V is a point on XY and P is a point inside the square with PV perpendicular to XY. PW = PZ = PV – 5. Find PV. -Maths 9th

Last Answer : answer:

Description : The line segment joining P(5, –2) and Q(9, 6) is divided in the ratio 3 : 1 by a point A -Maths 9th

Last Answer : Comparing y = 5\(x\) –7 with y = m\(x\) + c, the slope of given line = m = 5 ∴ Equation of a line parallel to y = 5\(x\) – 7 having y-intercept = –1 is y = 5\(x\) – 1.

Description : Points P (5, -3) is one of the two points of trisection of the line segment joining points A(7, -2) and B(1, -5) near to A. find the coordinates of the other point of trisection. -Maths 9th

Last Answer : answer:

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided ? -Maths 9th

Last Answer : From the adjoining figure, we have The field PQRS is divided into three parts △PAQ, △APS and △AQR. Now, △PAQ and ||gm PQRS are on the same base and lie between the same parallels. ∴ ar(△PAQ) = 1 / 2 ar(||gm ... , she can sow wheat in △APS and △AQR, pulses in △PAQ or vice - versa .

Description : ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that : -Maths 9th

Last Answer : (i) Since diagonals of a parallelogram bisect each other. ∴ O is the mid - point AC as well as BD. In △ADC, OD is a median. ∴ ar(△ADO) = ar(△CDO) [∵ A median of a triangle divide it into two triangles of equal ... and (i) , we have ar(△AOB) - ar(△AOP) = ar(△BOC) - ar(△COP) ⇒ ar(△ABP) = (△CBP)

Description : In the given figure, WXYZ is a quadrilateral with a point P on side WX. If ZY // WX, show that : -Maths 9th

Last Answer : ar (ZPY)=ar( ZXY) they lie between the same base and between the same parallels Similarly, ar(WZY)=ar(ZPY) ar(ZWX)=ar(XWY)

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : If P(-l, 1), Q(3, -4), R(1, -1), S(-2, -3) and T(-4, 4) are plotted on the graph paper, then the point(s) in the fourth quadrant is/are -Maths 9th

Last Answer : (b) In point P (-1, 1), x-coordinate is -1 unit and y-coordinate is 1 unit, so it lies in llnd quadrant. Similarly, we can plot all the points Q (3, -4), R (1, -1), S (-2, -3) and T (-4, 4), It is clear from the graph that points R and Q lie in fourth quadrant.

Description : The perpendicular distance of the point P(3, 4) from the Y-axis is -Maths 9th

Last Answer : (a) We know that, abscissa or the x-coordinate of a point is its perpendicular distance from the Y-axis. So, perpendicular distance of the point P(3, 4)from Y-axis = Abscissa = 3.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : P is the mid-point of the side CD of a parallelogram ABCD. -Maths 9th

Last Answer : According to question prove that DA = AR and CQ = QR.

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : Two equal chords AB and CD of a circle when produced intersect at a point P. Prove that PB = PD. -Maths 9th

Last Answer : According to question prove that PB = PD.

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided ? -Maths 9th

Last Answer : From the adjoining figure, we have The field PQRS is divided into three parts △PAQ, △APS and △AQR. Now, △PAQ and ||gm PQRS are on the same base and lie between the same parallels. ∴ ar(△PAQ) = 1 / 2 ar(||gm ... , she can sow wheat in △APS and △AQR, pulses in △PAQ or vice - versa .

Description : ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that : -Maths 9th

Last Answer : (i) Since diagonals of a parallelogram bisect each other. ∴ O is the mid - point AC as well as BD. In △ADC, OD is a median. ∴ ar(△ADO) = ar(△CDO) [∵ A median of a triangle divide it into two triangles of equal ... and (i) , we have ar(△AOB) - ar(△AOP) = ar(△BOC) - ar(△COP) ⇒ ar(△ABP) = (△CBP)

Description : In the given figure, WXYZ is a quadrilateral with a point P on side WX. If ZY // WX, show that : -Maths 9th

Last Answer : ar (ZPY)=ar( ZXY) they lie between the same base and between the same parallels Similarly, ar(WZY)=ar(ZPY) ar(ZWX)=ar(XWY)

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : If P(-l, 1), Q(3, -4), R(1, -1), S(-2, -3) and T(-4, 4) are plotted on the graph paper, then the point(s) in the fourth quadrant is/are -Maths 9th

Last Answer : (b) In point P (-1, 1), x-coordinate is -1 unit and y-coordinate is 1 unit, so it lies in llnd quadrant. Similarly, we can plot all the points Q (3, -4), R (1, -1), S (-2, -3) and T (-4, 4), It is clear from the graph that points R and Q lie in fourth quadrant.

Description : The perpendicular distance of the point P(3, 4) from the Y-axis is -Maths 9th

Last Answer : (a) We know that, abscissa or the x-coordinate of a point is its perpendicular distance from the Y-axis. So, perpendicular distance of the point P(3, 4)from Y-axis = Abscissa = 3.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : P is the mid-point of the side CD of a parallelogram ABCD. -Maths 9th

Last Answer : According to question prove that DA = AR and CQ = QR.

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : Two equal chords AB and CD of a circle when produced intersect at a point P. Prove that PB = PD. -Maths 9th

Last Answer : According to question prove that PB = PD.

Description : For what value of p the point (p, 2) lies on the line 3x + y = 11? -Maths 9th

Last Answer : Solution :-

Description : If a point O lies between two points P and R such that PO=OR then prove that PO= 1/2PR. -Maths 9th

Last Answer : THINGS WHICH ARE COINCIDE WITH EACH OTHER ARE EQUAL TO ONE ANOTHER PO+OR=PR 2PO=PR PO=OR PO=1/2PR HENCE PROVED

Description : Two congruent circles intersect each other at point A and B.Through A any line segment PAQ is drawn so that P,Q lie on the two circles.Prove that BP = BQ. -Maths 9th

Last Answer : Solution :- Let, O and O' be the centres of two congruent circles. As, AB is the common chord of these circles. ∴ ACB = ADB As congruent arcs subtent equal angles at the centre. ∠AOB = ∠AO'B ⇒ 1/2∠AOB = 1/2∠AO'B ⇒ ∠BPA = ∠BQA ⇒ BP = BQ (Sides opposite to equal angles)

Description : The product of the abscissa and the ordinate of a point P is negative. In which quadrants can the point lie ? -Maths 9th

Last Answer : answer:

Description : In the given figure, (not drawn to scale), P is a point on AB such that AP : PB = 4 : 3. PQ is parallel to AC and QD -Maths 9th

Last Answer : answer:

Description : ABCD is a parallelogram. P is a point on AD such that AP = 1/3 AD and Q is a point on BC such that CQ = 1/3 BC. Prove that AQCP is a parallelogram. -Maths 9th

Last Answer : answer:

Description : Let ABCD be a parallelogram. P is any point on the side AB. If DP and CP are joined in such a way that they bisect the angles -Maths 9th

Last Answer : answer:

Description : Determine the ratio in which the point P(m, 6) divides the join of A(– 4, 3) and B(2, 8). Also find the value of m. -Maths 9th

Last Answer : (b) 1 : 2Any point on the x-axis is (a, 0).Let the point (a, 0) divide the join of A(2, -3) and B(5, 6) in the ratio k : 1. Then the co-ordinates of the point of division are \(\bigg(rac{5k+2}{k+1},rac{6k-3}{k+1}\ ... 6k - 3 = 0 ⇒ k = \(rac{1}{2}\)Required ratio is k : 1 ⇒ \(rac{1}{2}\) : 1 = 1 : 2.

Description : Draw a circle of diameter 6.4 cm. Then draw two tangents to the circle from a point P at a distance 6.4 cm from the centre of the circle. -Maths 9th

Last Answer : clear .

Description : At a given instant three-point masses m, 2m, and 3m are equidistant from each other.

Last Answer : At a given instant three-point masses m, 2m, and 3m are equidistant from each other. ... All masses experience a force of the same magnitude.

Description : What is the set of points in a plane that are equidistant from a given point known as the center?

Last Answer : circle

Description : There are 3 poles M, N and O in a straight line such that point N is equidistant from points M and O. A boat can travel from point M to O downstream in 6 hours and from N to M upstream in 4 hours. Find the ratio of boat in still water to speed of stream. A) 2:3 B) 7:1 C) 3:2 D) 1:7

Last Answer : ANSWER: B Explanation: Let speed in still water = x km/hr, of current = y km/hr Downstream speed = (x+y) km/hr Upstream speed = (x - y) km/hr Let MO = 2p km. So MN = NO = p km.  So 2p/(x+y) = 6 --------1  p/ ... - 2y) = 6x + 6y  8x - 8y = 6x +6y  2x = 14y  x/y = 14 / 2 = 7/1  x : y = 7 :1