The perpendicular distance of the point P(3, 4) from the Y-axis is -Maths 9th

1 Answer

Answer :

(a) We know that, abscissa or the x-coordinate of a point is its perpendicular distance from the Y-axis. So, perpendicular distance of the point P(3, 4)from Y-axis = Abscissa = 3.

Related questions

Description : The perpendicular distance of the point P(3, 4) from the Y-axis is -Maths 9th

Last Answer : (a) We know that, abscissa or the x-coordinate of a point is its perpendicular distance from the Y-axis. So, perpendicular distance of the point P(3, 4)from Y-axis = Abscissa = 3.

Description : Find the perpendicular distance of the point P(5, 7) from the y-axis. -Maths 9th

Last Answer : Solution :- 5

Description : If the perpendicular distance of a point P from the X-axis is 5 units and the foot of the perpendicular lies on the negative direction of X-axis, then the point P has -Maths 9th

Last Answer : (d) We know that, the perpendicular distance of a point from the X-axis gives y-coordinate of that point. Here, foot of perpendicular lies on the negative direction of X-axis, so perpendicular distance can be measure in II quadrant or III quadrant. Hence, the point P has y-coordinate = 5 or -5.

Description : If the perpendicular distance of a point P from the X-axis is 5 units and the foot of the perpendicular lies on the negative direction of X-axis, then the point P has -Maths 9th

Last Answer : (d) We know that, the perpendicular distance of a point from the X-axis gives y-coordinate of that point. Here, foot of perpendicular lies on the negative direction of X-axis, so perpendicular distance can be measure in II quadrant or III quadrant. Hence, the point P has y-coordinate = 5 or -5.

Description : The position of a boy on the coordinate plane is given by the point (4,6) . What is the perpendicular distance from the x-axis and the y-axis ? -Maths 9th

Last Answer : answer:

Description : The point which lies on Y-axis at a distance of 5 units in the negative direction of Y-axis is -Maths 9th

Last Answer : (C) Given the point lies on X-axis this shows that its ^-coordinate is zero. Also, it is at a distance of 5 units in negative direction of X-axis, so its y-coordinate” is negative.Hence, the required point is (0, – 5).

Description : A point lies on positive direction of X-axis at a distance of 7 units from the Y-axis. What are its coordinates ? -Maths 9th

Last Answer : Given, point lies on the positive direction of X-axis, so its y-coordinate will be zero and it is at a distance of 7 units from the X-axis, so its coordinates are (7, 0). If it lies on negative ... x-coordinate will be zero and its distance from X-axis is 7 units, so its coordinates are (0, -7).

Description : The point which lies on Y-axis at a distance of 5 units in the negative direction of Y-axis is -Maths 9th

Last Answer : (C) Given the point lies on X-axis this shows that its ^-coordinate is zero. Also, it is at a distance of 5 units in negative direction of X-axis, so its y-coordinate” is negative.Hence, the required point is (0, – 5).

Description : A point lies on positive direction of X-axis at a distance of 7 units from the Y-axis. What are its coordinates ? -Maths 9th

Last Answer : Given, point lies on the positive direction of X-axis, so its y-coordinate will be zero and it is at a distance of 7 units from the X-axis, so its coordinates are (7, 0). If it lies on negative ... x-coordinate will be zero and its distance from X-axis is 7 units, so its coordinates are (0, -7).

Description : At what point does the graph of the linear equation 2x + 3y = 9 meet a line which is parallel to the y-axis, at a distance of 4 units from the origin and on the right of the y-axis? -Maths 9th

Last Answer : hope its clear

Description : The acute angle which the perpendicular from the origin on the line 7x –3y = 4 makes with the x-axis is: -Maths 9th

Last Answer : (c) negativeAs the line from the origin is perpendicular to the line 7x - 3y = 4, so its slope = \(rac{-1}{ ext{slope of }\,7x-3y=4}\)Slope of 7x - 3y - 4 = \(rac{7}{3}\)∴ Slope of line from origin = \(rac{-1} ... of x-axis⇒ θ = tan-1 \(\big(rac{-3}{7}\big)\) = - tan-1 \(\big(rac{3}{7}\big)\)

Description : WXYZ is a square of side length 30. V is a point on XY and P is a point inside the square with PV perpendicular to XY. PW = PZ = PV – 5. Find PV. -Maths 9th

Last Answer : answer:

Description : In figure LM is a line parallel to the Y-axis at a distance of 3 units. -Maths 9th

Last Answer : Given, LM is a line parallel to the Y-axis and its perpendicular distance from Y-axis is 3 units. (i) Coordinate of point P = (3, 2) [since, its perpendicular distance from X-axis is 2] Coordinate of ... 3, abscissa of point M = 3 Difference between the abscissa of the points L and M = 3 -3 = 0

Description : In figure LM is a line parallel to the Y-axis at a distance of 3 units. -Maths 9th

Last Answer : Given, LM is a line parallel to the Y-axis and its perpendicular distance from Y-axis is 3 units. (i) Coordinate of point P = (3, 2) [since, its perpendicular distance from X-axis is 2] Coordinate of ... 3, abscissa of point M = 3 Difference between the abscissa of the points L and M = 3 -3 = 0

Description : In fig.4.7, LM is a line parallel to the y - axis at a distance of 2 units. -Maths 9th

Last Answer : Given , LM is a line parallel to the Y-axis and its perpendicular distance from Y-axis is 3 units. (i) Coordinates of point P=(3,2) [since,its perpendicular distance from X-axis is 2] Coordinate of point ... L=3 , abscissa of point M=3 ∴∴ Difference between the abscissa of the points L and M =3-3=0

Description : What are the co-ordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 ? -Maths 9th

Last Answer : (d) 2x + 9y + 7 = 0PS being the median of ΔPQR, S is the mid-point of QR, i.e., Coordinates of S ≡ \(\bigg(rac{6+7}{2},rac{-1+3}{2}\bigg)\) = \(\bigg(rac{13}{2},1\bigg)\)Slope of line parallel to PS = Slope of PS= \(rac{1 ... y + 1) = \(rac{-2}{9}\)(x - 1), i.e., 9y + 9 = - 2x + 2 ⇒ 2x + 9y + 7 = 0.

Description : Write the coordinates of a point on x-axis at a distance of 6 units from the origin in the positive direction of x-axis and then justify your answer. -Maths 9th

Last Answer : Solution :- As, any point on x-axis has coordinates (,)x0 where x is the distance from origin, so required coordinates are (6, 0).

Description : Find the co-ordinates of the points on the x-axis which are at a distance of 10 units from the point (– 4, 8)? -Maths 9th

Last Answer : (a) Internal division: If P(x, y) divides the line segment formed by the joining of the points A (x1, y1) and B (x2, y2) internally in the ratio m1 : m2. Then\(x=rac{m_1x_2+m_2x_1}{m_1+m_2}\) and \(y=rac ... : 1, the co-ordinates of the mid-point are \(\bigg(rac{x_1+x_2}{2},rac{y_1+y_2}{2}\bigg)\).

Description : Find the perpendicular distance between the lines 9x + 40y – 20 = 0 and 9x + 40y + 21 = 0. -Maths 9th

Last Answer : Given line: x - 2y = 3 ⇒ y = \(rac{x}{2}\) - \(rac{3}{2}\) ....(i)∴ Its slope = m1 = \(rac{1}{2}\)Let m2 be the slope of line through (3, 2). Since this line is inclined at 45º to line (i),tan 45º = \(\bigg ... (x -3)⇒ 3y - 6 = - x + 3 or y - 2 = 3x - 9 ⇒ 3y + x - 9 = 0 or y - 3x + 7 = 0.

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, prove that arc PXA = arc PYB. -Maths 9th

Last Answer : Let AB be a chord of a circle having centre at OPQ be the perpendicular bisector of the chord AB, which intersects at M and it always passes through O. To prove arc PXA ≅ arc PYB Construction Join AP and BP. Proof In ... ΔBPM, AM = MB ∠PMA = ∠PMB PM = PM ∴ ΔAPM s ΔBPM ∴PA = PB ⇒arc PXA ≅ arc PYB

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, prove that arc PXA = arc PYB. -Maths 9th

Last Answer : Let AB be a chord of a circle having centre at OPQ be the perpendicular bisector of the chord AB, which intersects at M and it always passes through O. To prove arc PXA ≅ arc PYB Construction Join AP and BP. Proof In ... ΔBPM, AM = MB ∠PMA = ∠PMB PM = PM ∴ ΔAPM s ΔBPM ∴PA = PB ⇒arc PXA ≅ arc PYB

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, then prove that arc PXA ≅ arc PYB. -Maths 9th

Last Answer : Solution :- Let AB be a chord of a circle having centre at O. Let PQ be the perpendicular bisector of the chord AB intersect it say at M. Perpendicular bisector of the chord passes through the centre of the circle,i. ... = PM (Common) ∴ △APM ≅ △BPM (SAS) PA = PB (CPCT) Hence, arc PXA ≅ arc PYB

Description : If p is the length of the perpendicular drawn from the origin to the line -Maths 9th

Last Answer : Let the x-intercept = a. Then y-intercept = -1 - a The equation of the required line is \(rac{x}{a}\) + \(rac{y}{-1-a}\) = 1Given, it passes through (4, 3), so,\(rac{4}{a}\) + \(rac{3}{-1-a}\) = 1⇒ - 4 - 4a ... 2}\) - \(rac{y}{3}\) = 1When a = -2, required line is \(rac{x}{-2}\) + \(rac{y}{3}\) = 1

Description : If p be the length of the perpendicular from the origin on the straight line ax + by = p and b -Maths 9th

Last Answer : (d) \(rac{17}{\sqrt{13}};\) 17 sq. unitsEquation of line BC : y - 7 = \(rac{1-7}{5-1}(x-1)\)⇒ y - 7 = \(rac{-6}{4}(x-1)\)⇒ 2 (y - 7) = -3 (x - 1) ⇒ 2y - 14 = -3x + 3 ⇒ 3x + 2y - 17 = 0. ∴ ... \) = \(2\sqrt{13}\)∴ Required area = \(rac{1}{2}\) x \(rac{17}{\sqrt{13}}\) x \(2\sqrt{13}\) = 17 sq. units.

Description : The graph of the linear equation 2x + 3y = 6 cuts the Y-axis at the point. -Maths 9th

Last Answer : (d) Since, the graph of linear equation 2x + 3y = 6 cuts the Y-axis. So, we put x = 0 in the given equation 2x+ 3y = 6, we get 2 x 0+ 3y = 6 ⇒ 3y = 6 y = 2. Hence, at the point (0, 2), the given linear equation cuts the Y-axis.

Description : The graph of the linear equation 2x + 3y = 6 cuts the Y-axis at the point. -Maths 9th

Last Answer : (d) Since, the graph of linear equation 2x + 3y = 6 cuts the Y-axis. So, we put x = 0 in the given equation 2x+ 3y = 6, we get 2 x 0+ 3y = 6 ⇒ 3y = 6 y = 2. Hence, at the point (0, 2), the given linear equation cuts the Y-axis.

Description : Point on Y-axis is equidistant from 5,4 and - 2,3 is -Maths 9th

Last Answer : NEED ANSWER

Description : Point on Y-axis is equidistant from 5,4 and - 2,3 is -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : Write the equation of a line parallel to y-axis and passing through the point (–4, –5). -Maths 9th

Last Answer : Solution :- x= -4

Description : If y-coordinate of a point is zero, then where will this point lie in the coordinate plane? On the x-axis. -Maths 9th

Last Answer : Solution :- On the x-axis.

Description : Find the point whose ordinate is –3 and which lies on y-axis. -Maths 9th

Last Answer : Solution :- (0,-3)

Description : ______ is the perpendicular distance between point of application of force and axis of rotation. (1) Moment arm (2) Moment of Inertia (3) Altitude (4) Base

Last Answer : (1) Moment arm Explanation: The magnitude of the moment of force acting about a point or axis is directly proportional to the distance of the force from the point or axis.

Description : Draw the graph of the equation represented by a straight Line which is parallel to the X-axis and at a distance 3 units below it. -Maths 9th

Last Answer : Any straight line parallel to X-axis in negative direction of Y-axis is given by y = - k, where k is the distance of the line from the X-axis. Here, k = 3. Therefore, the equation of the line is y = -3. To ... , plot the points (1,-3), (2, -3) and (3, -3) and join them. This is the required graph.

Description : Draw the graph of the equation represented by a straight Line which is parallel to the X-axis and at a distance 3 units below it. -Maths 9th

Last Answer : Any straight line parallel to X-axis in negative direction of Y-axis is given by y = - k, where k is the distance of the line from the X-axis. Here, k = 3. Therefore, the equation of the line is y = -3. To ... , plot the points (1,-3), (2, -3) and (3, -3) and join them. This is the required graph.

Description : Write the equation of the line parallel to the x-axis at distance 3 units above x-axis. -Maths 9th

Last Answer : Solution :-

Description : Draw a circle of diameter 6.4 cm. Then draw two tangents to the circle from a point P at a distance 6.4 cm from the centre of the circle. -Maths 9th

Last Answer : clear .

Description : Prove that through a given point, we can draw only one perpendicular to a given line. -Maths 9th

Last Answer : Given Consider a line l and a point P.

Description : Prove that through a given point, we can draw only one perpendicular to a given line. -Maths 9th

Last Answer : Given Consider a line l and a point P.

Description : A point is selected at random inside an equilateral triangle. From this point a perpendicular is dropped to each side. -Maths 9th

Last Answer : answer:

Description : Find the equation of the straight line passing through the point (4, 5) and perpendicular to 3x – 2y + 5 = 0. -Maths 9th

Last Answer : There are two ways to prove it. 1st way: Area of triangle formed by the given points = 0 if they are collinear.∴ \(rac{1}{2}\) [\(x\)(2 - (y + 1) ) + 1((y + 1) - 1) + 0(1 - 2)] = 0⇒ \(rac{1}{2}\) [2\(x\) - \(x\)y - \( ... y - \(x\)y - 1 + \(x\) ⇒ x + y = \(x\)y ⇒ \(rac{1}{x}\) + \(rac{1}{y}\) = 1.

Description : The point A(0, 0), B(1, 7) and C(5, 1) are the vertices of a triangle. Find the length of the perpendicular from -Maths 9th

Last Answer : (b) 3x - y = 0 Given lines are 3x - y - 3 = 0 and 3x - y + 5 = 0. Line parallel to the given lines can be written as 3x - y + c = 0 ...(i) Let us taken a point, say ... 5c + 15 = - 3c + 15 ⇒ 8c = 0 ⇒ c = 0. Substituting c = 0 in (i), the required equation is 3x - y = 0.

Description : A straight line passes through the points (5, 0) and (0, 3). The length of the perpendicular from the point (4, 4) on the line is: -Maths 9th

Last Answer : (b) \(rac{\sqrt{17}}{2}\)Equation of the line through the points (5, 0) and (0, 3) y - 0 = \(rac{3-0}{0-5}\) (x - 5)⇒ y = \(rac{-3}{5}\)(x - 5)⇒ 5y + 3x - 15 = 0 ∴ Distance of perpendicular from ... (rac{|20+12-15|}{\sqrt{25+9}{}}\) = \(rac{17}{\sqrt{34}}\) units. = \(rac{\sqrt{17}}{2}\) units.

Description : Draw a circle with centre at point O and radius 5 cm. Draw its chord AB, draw the perpendicular bisector of line segment AB. Does it pass through the centre of the circle? -Maths 9th

Last Answer : STEP1: Draw a circle with centre at point O and radius 5 cm. STEP2: Draw its cord AB. STEP3: With centre A as centre and radius more than half of AB, draw two arcs, one on each side ... is perpendicular bisector of AB which is chord of circle, Hence, it passes through the centre of the circle.

Description : If P (5,1), Q (8, 0), R(0, 4), S(0, 5) and O(0, 0) are plotted on the graph paper, then the points on the X-axis is/are -Maths 9th

Last Answer : (d) We know that, a point lies on X-axis, if its y-coordinate is zero. So, on plotting the given points on graph paper, we get Q and O lie on the X-axis.

Description : Which of the points P(0, 3), Q(l, 0), R(0, – 1), S(-5, 0) and T(1, 2) do not lie on the X-axis ? -Maths 9th

Last Answer : (c) We know that, if a point is of the form (x, 0)i.e., its y-coordinate is zero, then it will lie on X-axis otherwise not. Here, y-coordinates of points P(0, 3), R (0, -1) and T (1,2) are not zero, so these points do not lie on the X-axis.

Description : If P (5,1), Q (8, 0), R(0, 4), S(0, 5) and O(0, 0) are plotted on the graph paper, then the points on the X-axis is/are -Maths 9th

Last Answer : (d) We know that, a point lies on X-axis, if its y-coordinate is zero. So, on plotting the given points on graph paper, we get Q and O lie on the X-axis.

Description : Which of the points P(0, 3), Q(l, 0), R(0, – 1), S(-5, 0) and T(1, 2) do not lie on the X-axis ? -Maths 9th

Last Answer : (c) We know that, if a point is of the form (x, 0)i.e., its y-coordinate is zero, then it will lie on X-axis otherwise not. Here, y-coordinates of points P(0, 3), R (0, -1) and T (1,2) are not zero, so these points do not lie on the X-axis.

Description : Find the co-ordinates of that point on the curve`y^(2)=x^(2)(1-x)` at which the tangent drawn is perpendicular to X-axis.

Last Answer : Find the co-ordinates of that point on the curve`y^(2)=x^(2)(1-x)` at which the tangent drawn is perpendicular to X-axis.