Four boys and three girls stand in a queue for an interview. What is the probability that they will be in alternate positions ? -Maths 9th

1 Answer

Answer :

Total number of ways of arranging 4 boys and 3 girls, i.e., 7 people in a queue (row) = n(S) = 7! Let A : Event in which the 4 boys and 3 girls occupy alternate position. This is possible when the 4 boys occupy the 4 odd places standing form position 1 and the girls fill in the three even places between then as :∴ 4 boys can be arranged in a queue in 4! ways 3 girls can fill the gaps in the queue in 3! ways. ∴ n(A) = 4! × 3!∴ P(A) = \(rac{n(A)}{N(S)}\) = \(rac{4! imes3!}{7!}\) = \(rac{4 imes3 imes2 imes1 imes3 imes2 imes1}{7 imes6 imes5 imes4 imes3 imes2 imes1}\) = \(rac{1}{35}.\)

Related questions

Description : In a class, there are x girls and y boys, a student is selected at random, then find the probability of selecting a boy. -Maths 9th

Last Answer : Number of boys = y Total students = (x + y) Thus,P(a boy)= y/(x+y)

Description : In a class, there are x girls and y boys, a student is selected at random, then find the probability of selecting a boy. -Maths 9th

Last Answer : Number of boys = y Total students = (x + y) Thus,P(a boy)= y/(x+y)

Description : 6 boys and 6 girls are sitting in a row randomly. The probability that boys and girls sit alternately is -Maths 9th

Last Answer : (b) \(rac{1}{462}\)Let S be the sample space. Then, n(S) = Number of ways in which 6 boys and 6 girls can sit in a row = 12! Let E : Event of 6 girls and 6 boys sitting alternately. Then, the ... )= \(rac{2 imes6 imes5 imes4 imes3 imes2 imes1}{12 imes11 imes10 imes9 imes8 imes7}\) = \(rac{1}{462}\).

Description : 6 boys and 6 girls are seated in a row. Probability that all the boys sit together is -Maths 9th

Last Answer : (d) \(rac{1}{132}\)Let S be the sample space for arranging 6 boys and 6 girls in a row. Then, n(S) = 12! If all 6 boys are to sit together, then consider the 6 boys as one entity. Now the ... ) = \(rac{7 imes6 imes5 imes4 imes3 imes2}{12 imes11 imes10 imes9 imes8 imes7}\) = \(rac{1}{132}\).

Description : There are 5 boys and 3 girls. In how many ways can they stand in a row so that no two girls are together? -Maths 9th

Last Answer : Have the 55 boys stand in a line. This can be done in 5!5! ways. For the moment, add a boy at each end, who will be removed when we're done. Now send the 33 girls, one at a time, to ... that each girl can either wedge herself between two boys or else stand next to a boy at one end or the other.

Description : A husband and a wife appear in an interview for two vacancies in the same post. The probability of husband‘s -Maths 9th

Last Answer : Let A : Event of husband being selected B : Event of wife being selectedThen P(A) = \(rac{1}{7},\) P(B) = \(rac{1}{5}\)P(\(\bar{A}\)) = 1 - \(rac{1}{7}\) = \(rac{6}{7}\), P(\(\bar{B}\)) = 1 - ... {24}{35}\)(iv) P(at least one selected) = 1 - P(none selected) = 1 - \(rac{24}{35}\) = \(rac{11}{35}\)

Description : The ratio of girls and boys in a class is 1: 3. Set up an equation between the students of a class and boys and then draw its graph. Also find the number of boys in a class of 40 students from the graph. -Maths 9th

Last Answer : Total number of boys and girl = 40, Ratio = 1 : 3 Number of girls be A and Number of boys be B. Ratio of number of girls and boys is 1 : 3, so Therefore 3A=B To find number of boys we ... the number 30 represents the number of girls. 40 as total on the line A = 10, which is the common equation.

Description : A class consists of 80 students, 25 of them are girls and 55 boys. 10 of them are rich and 20 are fair complexioned. -Maths 9th

Last Answer : Let P (A) = Probability of selecting a fair complexioned person. ThenP(A) = \(rac{20}{80}\) = \(rac{1}{4}\)Let P(B) = Probability of selecting a rich person. Then P(B) = \(rac{10}{80}\) = \(rac{1}{8}\)Let P (C) = ... ) = \(rac{1}{4}\)x \(rac{1}{8}\)x \(rac{5}{16}\) = \(rac{5}{512}\) = 0.009.

Description : A group of 2n boys and 2n girls is divided at random into two equal batches. -Maths 9th

Last Answer : (c) \(rac{(^{2n}C_n)^2}{^{4n}C_{2n}}\)Total number of boys and girls = 2n + 2n = 4n Since, there are two equal batches, each batch has 2n members ∴ Let S (Sample space) : Selecting one batch out of 2 ⇒ S : ... )2∴ Required probability = \(rac{n(E)}{n(S)}\) = \(rac{(^{2n}C_n)^2}{^{4n}C_{2n}}\)

Description : There are 6 numbered chairs placed around a circular table. 3 boys and 3 girls want to sit on them such that neither of two boys nor two girls -Maths 9th

Last Answer : Since the chairs are numbered, so they are distinguishable. Therefore 3 boys can be arranged on 3 alternate chairs in 3! ways. 3 girls can be arrenged in 3! ways Also, the girls can be seated before the boys. Total number of required ways = 3! × 3! + 3! × 3! = 2 × (3!)2

Description : In a class there are 15 boys and 10 girls. Three students are selected at random. The difference between the probability that 2 boys and 1 girl are selected compared to 1 boy and 2 girls are selected is: a) 23/78 b) 19/88 c) 15/92 d) 4/23 e) 7/46

Last Answer : 2 boys, 1 gi(Prl = (15c2×10c1) / 25c3 = 1050/2300 1 boy, 2 girls = (15c1×10c2) / 25c3 = 675/2300 Difference = (1050 - 675)/2300 = 375/2300 = 15/92 Answer: c)

Description : In a batch, there are 22 boys and 18 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is: a) 3754/8854 b) 4158/9880 c) 8514/9880 d) 2078/4920

Last Answer : Answer: B) Let , S - sample space E - event of selecting 1 girl and 2 boys. Then, n(S) = Number ways of selecting 3 students out of 40 = 40C3 = 9880 n(E) = 18C1 *22C2 = 18*231  = 4158 P(E) = n(E)/n(s) = 4158/9880 

Description : A bag contains 5 white, 7 red and 4 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white. -Maths 9th

Last Answer : Let A, B, C, D denote the events of not getting a white ball in first, second, third and fourth draw respectively. Since the balls are drawn with replacement, therefore, A, B, C, D are independent events such that P (A) = P (B) ... x \(rac{11}{16}\) x \(rac{11}{16}\) = \(\big(rac{11}{16}\big)^4.\)

Description : Four cards are drawn from a full pack of cards. Find the probability that : -Maths 9th

Last Answer : 4 cards can be drawn from a pack of cards in 52C4 ways ∴ Exhaustive number of cases = n(S) = 52C4 (a) There are 4 suits, each containing 13 cards. Let A : Event of drawing one card from each suit ⇒ Favourable number of ... = \(rac{15229}{54145}\) (∵ P(Event) + P(complement of event) = 1)

Description : A bag contains 7 red and 5 green balls. The probability of drawing all four balls asred balls, when four balls are drawn at random is -Maths 9th

Last Answer : (b) \(rac{7}{99}\)There are (7 + 5) = 12 balls in the bag. 4 balls can be drawn at random from 12 balls in 12C4 ways. ∴ n(S) = 12C4 = \(rac{|\underline{7}}{|\underline3|\underline4}\) = \(rac{7 imes6 imes5}{3 ... ) = 35∴ Required probability = \(rac{n(A)}{n(S)}\) = \(rac{35}{495}\) = \(rac{7}{99}\).

Description : A four digit number is formed by the digits 1, 2, 3, 4 with no repetition. The probability that the number is odd is -Maths 9th

Last Answer : (a) \(rac{1}{2}\) Let S be the sample spaceThen n(S) = Number of four digit numbers that can be formed with out repetition1 of 4 digits1 of 3 digits1 of 2 digits1 of 1 digitThHTO= 4! = 4 3 2 1 ways = 24 ways. Let E : ... 1 = 12∴ P(E) = \(rac{n(E)}{n(S)}\) = \(rac{12}{24}\) = \(rac{1}{2}\).

Description : I am something that the naughty boys use to draw on, girls write beautifully on the side, you have to clap my defeaters every day, and I stand dumbly as the young children cry. What am I? -Riddles

Last Answer : A chalkboard. (When the young children cry, it means they are crying for a turn to write the answer and the defeaters are the erasers)

Description : AP and BQ are the bisectors of the two alternate interior angles formed by the intersection of a transversal t with parallel lines l and m (in the given figure). Show that AP || BQ. -Maths 9th

Last Answer : Given In the figure l || m, AP and BQ are the bisectors of ∠EAB and ∠ABH, respectively. To prove AP|| BQ Proof Since, l || m and t is transversal. Therefore, ∠EAB = ∠ABH [alternate interior ... ∠PAB and ∠ABQ are alternate interior angles with two lines AP and BQ and transversal AB. Hence, AP || BQ.

Description : In the given figure, bisectors AP and BQ of the alternate interior angles are parallel, then show that l || m. -Maths 9th

Last Answer : Given, In the figure AP|| BQ, AP and BQ are the bisectors of alternate interior angles ∠CAB and ∠ABF. To show l || m Proof Since, AP|| BQ and t is transversal, therefore ∠PAB = ∠ABQ [alternate interior angles] ⇒ 2 ∠PAB = 2 ∠ABQ [multiplying both sides by 2]

Description : AP and BQ are the bisectors of the two alternate interior angles formed by the intersection of a transversal t with parallel lines l and m (in the given figure). Show that AP || BQ. -Maths 9th

Last Answer : Given In the figure l || m, AP and BQ are the bisectors of ∠EAB and ∠ABH, respectively. To prove AP|| BQ Proof Since, l || m and t is transversal. Therefore, ∠EAB = ∠ABH [alternate interior ... ∠PAB and ∠ABQ are alternate interior angles with two lines AP and BQ and transversal AB. Hence, AP || BQ.

Description : In the given figure, bisectors AP and BQ of the alternate interior angles are parallel, then show that l || m. -Maths 9th

Last Answer : Given, In the figure AP|| BQ, AP and BQ are the bisectors of alternate interior angles ∠CAB and ∠ABF. To show l || m Proof Since, AP|| BQ and t is transversal, therefore ∠PAB = ∠ABQ [alternate interior angles] ⇒ 2 ∠PAB = 2 ∠ABQ [multiplying both sides by 2]

Description : In how many ways can the letters of the word “AFLATOON” be arranged if the consonants and vowels must occupy alternate places? -Maths 9th

Last Answer : 24 ways is the answer

Description : Find the probability that the three cards drawn from a pack of 52 cards are all black ? -Maths 9th

Last Answer : Number of ways in which three cards can be drawn from a pack of 52 cards n(S) = 52C3. Let A : Event of drawing all the three cards as black Then, n(A) = 26C3 (∵There are 26 black cards)∴ P(A ... (rac{^{26}C_3}{^{52}C_3}\) = \(rac{26 imes25 imes24}{52 imes51 imes50}\) = \(rac{2}{17}.\)

Description : The letters of the word ‘SOCIETY’ are placed at random in a row. What is the probability that three vowels come together ? -Maths 9th

Last Answer : There are 7 letters in the word SOCIETY. ∴ Total number of ways of arranging all the 7 letters = n(S) = 7!. When the case of three vowels being together is taken, then the three vowels are considered as one unit, so the ... = 5! 3! ∴ Required probability = \(rac{5! imes3!}{7!}\) = \(rac{1}{7}\)

Description : Three fair coins are tossed simultaneously. Find the probability of getting more heads than the number of tails. -Maths 9th

Last Answer : (d) \(rac{1}{2}\)Let S be the sample space. Then, S = {HHH, HHT, HTH, HTT, THH, THT,TTH, TTT} ⇒ n(S) = 8 Let A : Event of getting more heads than number of tails. Then, A = {HHH, HHT, HTH, THH} ⇒ n(A) = 4∴ P(A) = \(rac{n(A)}{n(S)}\) = \(rac{4}{8}\) = \(rac{1}{2}.\)

Description : Three identical dice are rolled. The probability that same number will appear on each of them is -Maths 9th

Last Answer : (d) \(rac{1}{36}\)Total number of outcomes when three identical dice are rolled, n(S) = 6 6 6 = 216 Let A : Event of rolling same number or each dice ⇒ A = {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5), ... 6)} ⇒ n(A) = 6 ∴ P(A) = \(rac{n(A)}{n(S)}\) = \(rac{6}{216}\) = \(rac{1}{36}\).

Description : If three natural numbersfrom 1 to 100 are selected randomly, then the probability that all are divisible by both 2 and 3 is -Maths 9th

Last Answer : (c) \(rac{4}{1155}\)Let n(S) = Number of ways of selecting 3 numbers from 100 numbers = 100C3 Let E : Event of selecting three numbers divisible by both 2 and 3 from numbers 1 to 100 = Event of selecting three ... C_3}{^{100}C_3}\) = \(rac{16 imes15 imes14}{100 imes99 imes98}\) = \(rac{4}{1155}\).

Description : A box contains 100 balls numbers from 1 to 100. If three balls are selected at random and with replacement from the box, what is the probability -Maths 9th

Last Answer : (d) \(rac{1}{4}\)The box contains 100 balls numbered from 1 to 100. Therefore, there are 50 even and 50 odd numbered balls. The sum of the three numbers drawn will be odd, if all three are odd or one is even and 2 are odd. ∴ Required probability = P(odd) × P(odd) × P(odd) + P(even) × P(odd) × P(odd)

Description : Three of the six vertices of a regular hexagon are chosen at random. The probability that the triangle with these vertices is equilateral equals : -Maths 9th

Last Answer : (c) \(rac{1}{10}\)Let S be the sample space.Then n(S) = Number of triangles formed by selecting any three vertices of 6 vertices of a regular hexagon= 6C3 = \(rac{6 imes5 imes4}{3 imes2}\) = 20.Let A : Event that the ... Required probability = \(rac{n(A)}{n(S)}\) = \(rac{2}{20}\) = \(rac{1}{10}\).

Description : A die is rolled three times. The probability of getting a larger number than the previous number each time is: -Maths 9th

Last Answer : (b) \(rac{5}{24}\)Total number of ways three die can be rolled = 6 6 6 = 216 A larger number than the previous number can be got in the three throws as (1, 2, 3), (1, 2, 4), (1, 2, 5) ( ... , 5, 6). ∴ Total number of favourable cases = 20∴ Required probability =\(rac{20}{216}\) = \(rac{5}{24}\).

Description : If the three independent events E1, E2 and E3, the probability that only E1 occurs is α, E2 occurs -Maths 9th

Last Answer : (c) 6Let \(x\), y, z be the probabilities of happening of events E1, E2 and E3 respectively. Then, \(\alpha\) = P (occurrence of E1 only) = x (1 - y) (1 - z) \(\beta\) = P (occurrence of E2 only) = (1 - \(x\)) y (1 - ... (x\) = 6z (From (i) and (ii))⇒ \(rac{x}{z}\) = 6 ⇒ \(rac{P(E_1)}{P(E_3)}\) = 6.

Description : Three girls Reshma, Salma and Mandeep are playing a game by standing on a circle of radius 5 m drawn in a park. -Maths 9th

Last Answer : Solution :- Let R, S and M represent the position of Reshma, Salma and Mandeep respectively. Clearly △RSM is an isosceles triangle as RS = SM = 6m Join OS which intersect RM at A. In △ROS and △MOS OR = OM ( ... . ∴ RM = 2RA RM = 2 x 4.8 = 9.6m Hence, distance between Reshma and Mandeep is 9.6m.

Description : A bag contains 5 green and 7 red balls, out of which two balls are drawn at random. What is the probability that they are of the same colour ? -Maths 9th

Last Answer : (d) \(rac{31}{66}\)Total number of balls in the bag = 12 (5 Green + 7 Red) Let S be the sample space of drawing 2 balls out of 12 balls.Thenn(S) = 12C2 = \(rac{12 imes11}{2}\) = 66∴ Let A : Event of drawing two red balls⇒ ... \(rac{n(B)}{n(S)}\) = \(rac{21}{66}\) + \(rac{10}{66}\) = \(rac{31}{66}\).

Description : A letter is taken out at random from ‘ASSISTANT’ and another is taken out from ‘STATISTICS’. The probability that they are same letters is -Maths 9th

Last Answer : (c) 0.8645Required probability = P(X not defective and Y not defective) = P(\(\bar{X}\)) x P(\(\bar{Y}\))= (1 – P(X)) (1 – P(Y))= \(\bigg(1-rac{9}{100}\bigg)\)\(\bigg(1-rac{5}{100}\bigg)\)= \(rac{91}{100}\) x \(rac{95}{100}\) = \(rac{8645}{10000}\) = 0.8645.

Description : Three students were made to stand on the points P, Q and S -Maths 9th

Last Answer : Coordinates of R are (6, 6). Reasoning, enjoyment, physical fitness.

Description : A coin is tossed 500 times and we get Heads : 285 and tails : 215 times. When a coin is tossed at random, what is the probability of getting a. head? b. tail? -Maths 9th

Last Answer : Given, Total number of events = 500 No. of times heads occur = 285 Probability of getting head when coin is tossed at random = 285/500 = 57/100 No. of times tails occur = 215 Probability of getting tails when coin is tossed at random = 215/500 = 43/100

Description : Two coin are tossed 400 times and we get a. Two Heads : 112 times b. One Head : 160 times c. No Head : 128 times. When two coins are tossed at random, what is the probability of getting a. Two Heads b. One Head c. No Head -Maths 9th

Last Answer : Given, Total number of events = 400 (a) No. of times two heads occur = 112 Probability of getting two heads = 112/400 = 7/25 (b) No. of times one heads occur = 160 Probability of getting one heads = 160/400 = 2/5 (c) No. of times no heads occur = 128 Probability of getting no heads = 128/400 = 8/25

Description : The probability of guessing the correct answer to a certain question is x/ 2. -Maths 9th

Last Answer : Here, probability of guessing the correct answer = x / 2 And probability of not guessing the correct answer = 2 / 3 Now, x / 2 + 2 / 3 = 1 ⇒ 3x + 4 = 6 ⇒ 3x = 2 ⇒ x = 2 / 3

Description : In a throw of a die, find the probability of not getting 4 or 5. -Maths 9th

Last Answer : Required probability = 1 – P(4) – P(5) =1- 1 / 6 - 1 / 6 = 4 / 6 = 2 / 3

Description : 750 families with 3 children were selected randomly and the following data recorded If a family member is chosen at random, compute the probability that it has : -Maths 9th

Last Answer : (i) P(no boy child) =100 / 750 = 2 / 15 (ii) P (no girl child) = 120 /750 =4 / 25

Description : If the probability of winning a race of an athlete is 1 / 6 less than the twice the probability of losing the race. -Maths 9th

Last Answer : Let probability of winning the race be p Probability of losing the race = 1 - p According to the statement of question, we have p = 2 (1 - p) - 1 / 6 ⇒ 6p = 12-12p -1 ⇒ 18p = 11 ⇒ p = 11 / 18 Hence, probability of winning the race is 11 / 18

Description : A coin is tossed 500 times and we get Heads : 285 and tails : 215 times. When a coin is tossed at random, what is the probability of getting a. head? b. tail? -Maths 9th

Last Answer : Given, Total number of events = 500 No. of times heads occur = 285 Probability of getting head when coin is tossed at random = 285/500 = 57/100 No. of times tails occur = 215 Probability of getting tails when coin is tossed at random = 215/500 = 43/100

Description : Two coin are tossed 400 times and we get a. Two Heads : 112 times b. One Head : 160 times c. No Head : 128 times. When two coins are tossed at random, what is the probability of getting a. Two Heads b. One Head c. No Head -Maths 9th

Last Answer : Given, Total number of events = 400 (a) No. of times two heads occur = 112 Probability of getting two heads = 112/400 = 7/25 (b) No. of times one heads occur = 160 Probability of getting one heads = 160/400 = 2/5 (c) No. of times no heads occur = 128 Probability of getting no heads = 128/400 = 8/25

Description : The probability of guessing the correct answer to a certain question is x/ 2. -Maths 9th

Last Answer : Here, probability of guessing the correct answer = x / 2 And probability of not guessing the correct answer = 2 / 3 Now, x / 2 + 2 / 3 = 1 ⇒ 3x + 4 = 6 ⇒ 3x = 2 ⇒ x = 2 / 3

Description : In a throw of a die, find the probability of not getting 4 or 5. -Maths 9th

Last Answer : Required probability = 1 – P(4) – P(5) =1- 1 / 6 - 1 / 6 = 4 / 6 = 2 / 3

Description : 750 families with 3 children were selected randomly and the following data recorded If a family member is chosen at random, compute the probability that it has : -Maths 9th

Last Answer : (i) P(no boy child) =100 / 750 = 2 / 15 (ii) P (no girl child) = 120 /750 =4 / 25

Description : If the probability of winning a race of an athlete is 1 / 6 less than the twice the probability of losing the race. -Maths 9th

Last Answer : Let probability of winning the race be p Probability of losing the race = 1 - p According to the statement of question, we have p = 2 (1 - p) - 1 / 6 ⇒ 6p = 12-12p -1 ⇒ 18p = 11 ⇒ p = 11 / 18 Hence, probability of winning the race is 11 / 18

Description : Can the experimental probability of an event be a negative number? -Maths 9th

Last Answer : No, because the number of trials in which the event can happen cannot be negative and the total number of trials is always positive.

Description : Can the experimental probability of an event be greater than 1? -Maths 9th

Last Answer : No, as the number of trials can't be greater than the total number of trials.

Description : In a throw of a die, find the probability of getting an even number. -Maths 9th

Last Answer : Total even number on a die = 3 P (getting an even numbers) = 3/6 = 1/2