Plot the points A (1, – 1) and B (4, 5). -Maths 9th

1 Answer

Answer :

In point A(1, -1), x-coordinate is positive and y-coordinate is negative, so it lies in IV quadrant. In point B(4, 5), both coordinates are positive, so it lies in I quadrant. On plotting these point, we get the following graph. (i) On joining the points A and B, we get the line segment AB. Now, to find the coordinates of a point on this line segment between A and B draw a perpendicular to X-axis from x = 2 and 3. [since, x = 2 and 3 lies between A and B] say it intersect line segment AB at P and p’. Now, draw a perpendicular to Y-axis from P and p’, they intersect Y-axis at y = 1 and 3, respectively. Thus, we get points (2,1) and (3, 3) which lie between line segment AB. (ii) Extent the line segment AB. Now, draw a perpendicular to X-axis from x = 5, say it intersects extended line segment at Q. Again, draw a perpendicular to Y-axis from Q and it intersects Y-axis at y = 7. Thus, we get the point Q(5,7) which lies outside the line segment AB.

Related questions

Description : Taking 0.5 cm as 1 unit, plot the following points on the graph paper. -Maths 9th

Last Answer : Here, in point 4(1, 3) both x and y-coordinates are positive, so it lies in I quadrant. In point 8(-3, -1),both x and y-coordinates are negative, so it lies in III quadrant. In point C(1, -4), x- ... is zero, so it lies on Y-axis and in point F(1,0) y-coordinate is zero, so it lies on X-axis.

Description : Plot the points P(1, 0), Q(4, 0) and 5(1, 3). Find the coordinates of the point R such that PQRS is a square. -Maths 9th

Last Answer : see the below answer

Description : Taking 0.5 cm as 1 unit, plot the following points on the graph paper. -Maths 9th

Last Answer : Here, in point 4(1, 3) both x and y-coordinates are positive, so it lies in I quadrant. In point 8(-3, -1),both x and y-coordinates are negative, so it lies in III quadrant. In point C(1, -4), x- ... is zero, so it lies on Y-axis and in point F(1,0) y-coordinate is zero, so it lies on X-axis.

Description : Plot the points A (1, – 1) and B (4, 5). -Maths 9th

Last Answer : In point A(1, -1), x-coordinate is positive and y-coordinate is negative, so it lies in IV quadrant. In point B(4, 5), both coordinates are positive, so it lies in I quadrant. On plotting these point, we ... Y-axis at y = 7. Thus, we get the point Q(5,7) which lies outside the line segment AB.

Description : Plot the points P(1, 0), Q(4, 0) and 5(1, 3). Find the coordinates of the point R such that PQRS is a square. -Maths 9th

Last Answer : see the below answer

Description : Plot the points A (5, 5) and B (–5, 5) in cartesian plane. Join AB, OA and OB. Name the type of triangle so obtained. -Maths 9th

Last Answer : Solution :- The obtained triangle is an isosceles triangle.

Description : Plot the points A(1,-3) and B(5,4). -Maths 9th

Last Answer : Solution :-

Description : Plot the points a(5,5) and b(-5,5) in the cartesian plane .join OA AB and OB name the figure obtained and find its area -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : Plot the following points and write the name of the figure obtained by joining, them in order -Maths 9th

Last Answer : Let X’ OX and Y’ OY be the coordinate axes and mark point on it. Here, point P(-3,2) lies in II quadrant, Q(-7,-3) lies in III quadrant, R(6, -3) lies in IV quadrant and S(2,2) lies in I quadrant. Plotting the points on the graph paper, the figure obtained is trapezium PQRS.

Description : Plot the points (x, y) given by the following table. -Maths 9th

Last Answer : On plotting the given points on the graph, we get the points P(2,4), Q(4,2) R (-3, 0), S (-2, 5), T (3, – 3)and O (0 0).

Description : Plot the following points and check whether they are collinear or not -Maths 9th

Last Answer : (i) Plotting the points P (1, 3), Q (-1, -1) and R (-2, - 3) on the graph paper and join these points, we get a straight line. Hence, these points are collinear. (ii) Plotting the points ... 6 (5, 5)on the graph paper and join these points, we get a straight line. Hence, given points are collinear.

Description : Plot the points (x, y) given by the following table. Use scale 1 cm= 0.25 unit. -Maths 9th

Last Answer : Let X’OX and X’ OX be the coordinate axes. Plot the given points (1.25, -0.5), (0.25, 1), (1.5,1.5) and (-1.75, – 0.25) on the graph paper.

Description : Plot the following points and write the name of the figure obtained by joining, them in order -Maths 9th

Last Answer : Let X’ OX and Y’ OY be the coordinate axes and mark point on it. Here, point P(-3,2) lies in II quadrant, Q(-7,-3) lies in III quadrant, R(6, -3) lies in IV quadrant and S(2,2) lies in I quadrant. Plotting the points on the graph paper, the figure obtained is trapezium PQRS.

Description : Plot the points (x, y) given by the following table. -Maths 9th

Last Answer : On plotting the given points on the graph, we get the points P(2,4), Q(4,2) R (-3, 0), S (-2, 5), T (3, – 3)and O (0 0).

Description : Plot the following points and check whether they are collinear or not -Maths 9th

Last Answer : (i) Plotting the points P (1, 3), Q (-1, -1) and R (-2, - 3) on the graph paper and join these points, we get a straight line. Hence, these points are collinear. (ii) Plotting the points ... 6 (5, 5)on the graph paper and join these points, we get a straight line. Hence, given points are collinear.

Description : Plot the points (x, y) given by the following table. Use scale 1 cm= 0.25 unit. -Maths 9th

Last Answer : Let X’OX and X’ OX be the coordinate axes. Plot the given points (1.25, -0.5), (0.25, 1), (1.5,1.5) and (-1.75, – 0.25) on the graph paper.

Description : For drawing a frequency polygon of a continuous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abscissae are, respectively -Maths 9th

Last Answer : NEED ANSWER

Description : For drawing a frequency polygon of a continuous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abscissae are, respectively -Maths 9th

Last Answer : (c) Class marks i.e., the mid-point of the classes are abscissa of the points, which we plot for frequency polygon.

Description : Plot the following points and check whether they are collinear or not: -Maths 9th

Last Answer : Solution :-

Description : Plot the points A(3, 2), B(-2, 2), C(-2, -2) and D(3, -2) in the cartesian plane. Join these points and name the figure so formed. -Maths 9th

Last Answer : answer:

Description : Plot the point A(2,0), B(5,0) and C(5,3). Find the coordinates of the point D such that ABCD is a square. -Maths 9th

Last Answer : Solution :-

Description : plot the graph -Maths 9th

Last Answer : F = ma This equation can be written in the form of y = mx, where m is the slope In this case m = m = 3 kg The graph will be a straight line passing through the origin. When a = 2, F = 6 N When a = 3, F = 9 N

Description : plot the graph -Maths 9th

Last Answer : F = ma This equation can be written in the form of y = mx, where m is the slope In this case m = m = 3 kg The graph will be a straight line passing through the origin. When a = 2, F = 6 N When a = 3, F = 9 N

Description : A rectangular plot is given for constructing a house having a measurement of 40 m long and 15 m in the front. -Maths 9th

Last Answer : Let ABCD is a rectangular plot having a measurement of 40 m long and 15 m front. ∴ Length of inner-rectangle, EF = 40 - 3 - 3 = 34 m and breadth of inner-rectangle, FG =15 - 2 - 2 = ... [∴ area of a rectangle = length x breadth] Hence, the largest area where the house can be constructed in 374 m2

Description : A rectangular plot is given for constructing a house having a measurement of 40 m long and 15 m in the front. -Maths 9th

Last Answer : Let ABCD is a rectangular plot having a measurement of 40 m long and 15 m front. ∴ Length of inner-rectangle, EF = 40 - 3 - 3 = 34 m and breadth of inner-rectangle, FG =15 - 2 - 2 = ... [∴ area of a rectangle = length x breadth] Hence, the largest area where the house can be constructed in 374 m2.

Description : 5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively. To show, AF and EC trisect the diagonal BD. Proof, ABCD is a parallelogram , AB || CD also, ... (i), DP = PQ = BQ Hence, the line segments AF and EC trisect the diagonal BD. Hence Proved.

Description : Points (1, -1), (2, – 2), (4, – 5) and (-3, – 4) -Maths 9th

Last Answer : (d) In points (1, -1), (2, -2) and (4, -5) x-coordinate is positive and y-coordinate is negative, So, they all lie in IV quadrant. In point (-3, – 4) x-coordinate is negative and y-coordinate is negative. So, it lies in III quadrant So, given points do not lie in the same quadrant.

Description : On plotting the points 0(0, 0), A(3, 0), 5(3, 4), C(0, 4) and joining OA, AB, BC and CO. -Maths 9th

Last Answer : (b) Here, point 0 (0, 0) is the origin. A(3, 0) lies on positive direction of X-axis, B (3, 4) lies in 1st quadrant and C (0, 4) lines on positive direction of Y-axis. On joining OA AB, BC and CO the figure obtained is a rectangle.

Description : The points (- 5, 2) and (2, -5) lie in the -Maths 9th

Last Answer : (c) In point (-5,2), x-coordinate is negative and y-coordinate is positive, so it lies in II quadrant and in point (2, – 5), x- coordinate is positive and y-coordinate is negative, so it lies in IV quadrant.

Description : If the coordinates of the two points are P(-2, 3) and Q(-3, 5), then (Abscissa of P) – (Abscissa of Q) is -Maths 9th

Last Answer : (b) We have, points P(- 2, 3) and Q(- 3, 5) Here, abscissa of Pi.e., x-coordinate of Pis -2 and abscissa of Q i.e., x-coordinate of Q is -3. So, (Abscissa of P) – (Abscissa of Q) = - 2 - (-3) = -2 + 3 =1.

Description : If P (5,1), Q (8, 0), R(0, 4), S(0, 5) and O(0, 0) are plotted on the graph paper, then the points on the X-axis is/are -Maths 9th

Last Answer : (d) We know that, a point lies on X-axis, if its y-coordinate is zero. So, on plotting the given points on graph paper, we get Q and O lie on the X-axis.

Description : Which of the points P(0, 3), Q(l, 0), R(0, – 1), S(-5, 0) and T(1, 2) do not lie on the X-axis ? -Maths 9th

Last Answer : (c) We know that, if a point is of the form (x, 0)i.e., its y-coordinate is zero, then it will lie on X-axis otherwise not. Here, y-coordinates of points P(0, 3), R (0, -1) and T (1,2) are not zero, so these points do not lie on the X-axis.

Description : Points A(5, 3), B(-2, 3) and 0(5, – 4) are three vertices of a square ABCD. -Maths 9th

Last Answer : The graph obtained by plotting the points A, B and C and D is given below. Take a point C on the graph such that ABCD is a square i.e., all sides AB, BC, CD, and AD are equal. So, abscissa of C should be ... of C should be equal to ordinate of D i.e., -4. Hence, the coordinates of C are (-2, - 4).

Description : Points (1, -1), (2, – 2), (4, – 5) and (-3, – 4) -Maths 9th

Last Answer : (d) In points (1, -1), (2, -2) and (4, -5) x-coordinate is positive and y-coordinate is negative, So, they all lie in IV quadrant. In point (-3, – 4) x-coordinate is negative and y-coordinate is negative. So, it lies in III quadrant So, given points do not lie in the same quadrant.

Description : The points (- 5, 2) and (2, -5) lie in the -Maths 9th

Last Answer : (c) In point (-5,2), x-coordinate is negative and y-coordinate is positive, so it lies in II quadrant and in point (2, – 5), x- coordinate is positive and y-coordinate is negative, so it lies in IV quadrant.

Description : On plotting the points 0(0, 0), A(3, 0), 5(3, 4), C(0, 4) and joining OA, AB, BC and CO. -Maths 9th

Last Answer : (b) Here, point 0 (0, 0) is the origin. A(3, 0) lies on positive direction of X-axis, B (3, 4) lies in 1st quadrant and C (0, 4) lines on positive direction of Y-axis. On joining OA AB, BC and CO the figure obtained is a rectangle.

Description : If the coordinates of the two points are P(-2, 3) and Q(-3, 5), then (Abscissa of P) – (Abscissa of Q) is -Maths 9th

Last Answer : (b) We have, points P(- 2, 3) and Q(- 3, 5) Here, abscissa of Pi.e., x-coordinate of Pis -2 and abscissa of Q i.e., x-coordinate of Q is -3. So, (Abscissa of P) – (Abscissa of Q) = - 2 - (-3) = -2 + 3 =1.

Description : If P (5,1), Q (8, 0), R(0, 4), S(0, 5) and O(0, 0) are plotted on the graph paper, then the points on the X-axis is/are -Maths 9th

Last Answer : (d) We know that, a point lies on X-axis, if its y-coordinate is zero. So, on plotting the given points on graph paper, we get Q and O lie on the X-axis.

Description : Which of the points P(0, 3), Q(l, 0), R(0, – 1), S(-5, 0) and T(1, 2) do not lie on the X-axis ? -Maths 9th

Last Answer : (c) We know that, if a point is of the form (x, 0)i.e., its y-coordinate is zero, then it will lie on X-axis otherwise not. Here, y-coordinates of points P(0, 3), R (0, -1) and T (1,2) are not zero, so these points do not lie on the X-axis.

Description : Points A(5, 3), B(-2, 3) and 0(5, – 4) are three vertices of a square ABCD. -Maths 9th

Last Answer : The graph obtained by plotting the points A, B and C and D is given below. Take a point C on the graph such that ABCD is a square i.e., all sides AB, BC, CD, and AD are equal. So, abscissa of C should be ... of C should be equal to ordinate of D i.e., -4. Hence, the coordinates of C are (-2, - 4).

Description : Two points with coordinates (3, 4) and (–5, 4) lie on a line parallel to which axis? Justify your answer. -Maths 9th

Last Answer : Solution :- y-coordinate of both the points is 4. So, both points lie on the line y = 4 which is parallel to x-axis.

Description : If the coordinates of two points are P( -2,3) and Q ( -3, 5) then find (abscissa of P)–(abscissa of Q) -Maths 9th

Last Answer : Abscissa of P – Abscissa of Q = (–2) – (–3) = –2 + 3 = 1.

Description : Prove that the points (2, –2), (–2, 1) and (5, 2) are the vertices of a right angled triangle. Also find the length of the hypotenuse -Maths 9th

Last Answer : Let the co-ordinates of any point on the x-axis be (x, 0). Then distance between (x, 0) and (– 4, 8) is 10 units.⇒ \(\sqrt{(x+4)^2+(0-8)^2}\) = 10 ⇒ x2 + 8x + 16 + 64 = 100 ⇒ x2 + 8x – 20 = 0 ⇒ (x + 10) (x – 2) = 0 ⇒ x = –10 or 2 ∴ The required points are (– 10, 0) and (2, 0).

Description : Let P(–3, 2), Q(–5, –5), R(2, –3) and S(4, 4) be four points in a plane. Then show that PQRS is a rhombus. Is it a square ? -Maths 9th

Last Answer : Let P(1, -1), Q \(\big(rac{-1}{2},rac{1}{2}\big)\) and R(1,2) be the vertices of the ΔPQR.Then, PQ = \(\sqrt{\big(rac{-1}{2}-1\big)^2+\big(rac{1}{2}+1\big)^2}\) = \(\sqrt{rac{9}{4}+rac{9}{4}} ... {3\sqrt2}{2}\)PR = \(\sqrt{(1-1)^2+(2+1)^2}\) = \(\sqrt9\) = 3∵ PQ = QR, the triangle PQR is isosceles.

Description : Find the ratio in which the x-axes divides the line joining the points (–2, 5) and (1, –9) ? -Maths 9th

Last Answer : Let the co-ordinates of the point of internal division A be (x, y). Then,\(x\) = \(rac{2 imes(-7)+3 imes8}{2+3}\) = \(rac{-14+24}{5}\) = \(rac{10}{5}\) = 2y = \(rac{2 imes4+3 imes9}{2+3}\) = \(rac{8+27}{5}\) = \(rac{35}{5}\) = 7∴ Co-ordinates of the point for internal division are (2, 7).

Description : If the points A(a, –11), B(5, b), C(2, 15) and D(1, 1) are the vertices of a parallelogram ABCD, find the values of a and b. -Maths 9th

Last Answer : Let the x-axis divide the line joining the points (-2, 5) and (1, -9) in the ratio k : 1. Let the point of division on x-axis is P Then,\(x\) = \(rac{k-2}{k+1}\), y = \(rac{-9k+ ... (rac{5}{9}\)k being positive, the division is internal. ∴ x-axis divides the given line internally in the ratio 5 : 9.

Description : Find the slope and inclination of the line which passes through the points (1, 2) and (5, 6) ? -Maths 9th

Last Answer : Let A ≡ (x, y), B ≡ (2, 1), C ≡ (3, -2) Area of ΔABC = \(rac{1}{2}\) |{x1 (y2 - y3) + x2(y3 - y1) + x3(y1 - y2)}|= \(rac{1}{2}\) | \(x\)(1 + 2) + 2(-2 - y) + 3(y - 1) | = \(rac{1}{2 ... \(rac{3}{2}\)∴ Co-ordinates of A are \(\bigg(rac{7}{2},rac{13}{2}\bigg)\) or \(\bigg(rac{-3}{2},rac{3}{2}\bigg)\)

Description : ABCD is a rectangle formed by the points A(–1, –1), B(–1, 4), C(5, 4) and D(5, –1). P, Q, R and S are mid-points -Maths 9th

Last Answer : (b) RhombusAB = \(\sqrt{(3-1)^2+(5-1)^2}\) = \(\sqrt{4+16}\) = \(\sqrt{20}\) = \(2\sqrt5\)BC = \(\sqrt{(1-5)^2+(1-3)^2}\) = \(\sqrt{16+4}\) = \(\sqrt{20}\) = \(2\sqrt5\)CD = \ ... = \(6\sqrt2\)Now, AB = BC = CD = AD ⇒ All sides are equal Also, AC ≠ BD ⇒ Diagonals are not equal. ⇒ ABCD is a rhombus.

Description : The points A(2, 3), B(3, 5), C(7, 7) and D(5, 6) are such that: -Maths 9th

Last Answer : (d) 24 unitsAB ⊥ chord PQ ⇒ AB bisects chord PQ ⇒ PQ = 2PB. AB = \(\sqrt{(2-5)^2+(-3-1)^2}\) = \(\sqrt{(-3)^2+(-4)^2}\)= \(\sqrt{9+16}\) = \(\sqrt{25}\) = 5AP = radius of circle = 13 ∴ By Pythagoras' ... = \(\sqrt{AP^2-AB^2}\)= \(\sqrt{169-25}\) = \(\sqrt{144}\) = 12 units∴ PQ = 2 PB = 24 units.

Description : In what ratio is the line joining the points (2, –3) and (5, 6) divided by the x-axis. -Maths 9th

Last Answer : (b) (2, 1) (- 2, 1)Let PQRS be the required square and P(0, -1) and R(0, 3) be its two opposite vertices. Length of diagonal PR = \(\sqrt{(0-0)^2+(3+1)^2}\) = \(\sqrt{16}\) = 4∴ Length of each side = \( ... + 4 = 8 ⇒ a2 = 4 ⇒ a = 2. ∴ The other two vertices of the square are (+2, 1) and (-2, 1).