Points A(5, 3), B(-2, 3) and 0(5, – 4) are three vertices of a square ABCD. -Maths 9th

1 Answer

Answer :

The graph obtained by plotting the points A, B and C and D is given below. Take a point C on the graph such that ABCD is a square i.e., all sides AB, BC, CD, and AD are equal. So, abscissa of C should be equal to abscissa of B i.e., -2 and ordinate of C should be equal to ordinate of D i.e., -4. Hence, the coordinates of C are (-2, – 4).

Related questions

Description : Points A(5, 3), B(-2, 3) and 0(5, – 4) are three vertices of a square ABCD. -Maths 9th

Last Answer : The graph obtained by plotting the points A, B and C and D is given below. Take a point C on the graph such that ABCD is a square i.e., all sides AB, BC, CD, and AD are equal. So, abscissa of C should be ... of C should be equal to ordinate of D i.e., -4. Hence, the coordinates of C are (-2, - 4).

Description : If the points A(a, –11), B(5, b), C(2, 15) and D(1, 1) are the vertices of a parallelogram ABCD, find the values of a and b. -Maths 9th

Last Answer : Let the x-axis divide the line joining the points (-2, 5) and (1, -9) in the ratio k : 1. Let the point of division on x-axis is P Then,\(x\) = \(rac{k-2}{k+1}\), y = \(rac{-9k+ ... (rac{5}{9}\)k being positive, the division is internal. ∴ x-axis divides the given line internally in the ratio 5 : 9.

Description : Find the area of quadrilateral ABCD whose vertices are A (1, 0), B (5, 3), C (2, 7), D ( -2, 4) -Maths 9th

Last Answer : answer:

Description : (–2, –1) and (4, –5) are the co-ordinates of vertices B and D respectively of rhombus ABCD. Find the equation of the diagonal AC. -Maths 9th

Last Answer : 3\(x\) - 2y + 5 = 0 ⇒ -2y = -3\(x\) - 5 ⇒ y = \(rac{3}{2}\)\(x\) + \(rac{5}{2}\)On comparing with y = m\(x\) + c, we see that slope of given line = \(rac{3}{2}\)As the required line is perpendicular to the given line, ... - 4)⇒ 3(y - 5) = - 2\(x\) + 8 ⇒ 3y - 15 = -2\(x\) + 8 ⇒ 3y + 2\(x\) - 23 = 0

Description : Name the quadrilateral ABCD, the coordinates of whose vertices are A(3, 5), B(1, 1), C(5, 3) and D(7, 7). -Maths 9th

Last Answer : (b) Equilateral, \(2\sqrt3a^2\) sq. unitsLet A(a, a), B(-a, -a) and C \((-\sqrt3a,\sqrt3a)\) be the vertices of ΔABC. Then,AB = \(\sqrt{(a+a)^2+(a+a)^2}\) = \(\sqrt{4a^2+4a^2}\) = \(\sqrt{8a^2}\) = \( ... 4}\) (side)2 = \(rac{\sqrt3}{4}\) x (\(2\sqrt2a\))2= \(rac{\sqrt3}{4}\) x 8a2 = \(2\sqrt3a^2\).

Description : The vertices A(4, 5), B(7, 6), C(4, 3) and D(1, 2) from the quadrilateral ABCD whose special name is -Maths 9th

Last Answer : (a) (5, 2)Let A(8, 6) , B(8, -2) and C(2, -2) be the vertices of the given triangle and P(x, y) be the circum-centre of this triangle. Then, PA2 = PB2 = PC2 Now, PA2 = PB2 ⇒ (x - 8)2 + (y - 6)2 = (x ... 4 = x2 - 4x + 4 + y2 + 4y + 4 ⇒ 12x = 60 ⇒ x = 5. ∴ Co-ordinates of the circumcentre are (5, 2).

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that (i) ΔAPB ≅ ΔCQD (ii) AP = CQ -Maths 9th

Last Answer : Q Solution: (i) In ΔAPB and ΔCQD, ∠ABP = ∠CDQ (Alternate interior angles) ∠APB = ∠CQD (= 90o as AP and CQ are perpendiculars) AB = CD (ABCD is a parallelogram) , ΔAPB ≅ ΔCQD [AAS congruency] (ii) As ΔAPB ≅ ΔCQD. , AP = CQ [CPCT]

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . -Maths 9th

Last Answer : In gm ABCD , AP and CQ are perpendicular from the vertices A and C on diagonal BD. Show that : (i) AAPB ≅ ACQD (ii) AP = CQ .

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . -Maths 9th

Last Answer : In gm ABCD , AP and CQ are perpendicular from the vertices A and C on diagonal BD. Show that : (i) AAPB ≅ ACQD (ii) AP = CQ .

Description : A point O in the interior of a rectangle ABCD is joined with each of the vertices A, B, C and D. Then, show that OA^2 + OC^2 = OB^2 + OD^2. -Maths 9th

Last Answer : answer:

Description : ABCD is a trapezium where AB and CD are non-parallel sides. If the vertices A, B, C and D are concyclic, then -Maths 9th

Last Answer : answer:

Description : ABCD is a square. E and F are respectively the mid - points of BC and CD. If R is the mid point of EF. -Maths 9th

Last Answer : Since R is the mid point of EF . ∴ AR is the median in △AEF. As, a median of a triangle divides it into two triangles of equal area . ∴ ar(△AER) = ar(△AFR)

Description : In the given figure, ABCD is a square. Side AB is produced to points P and Q in such a way that PA = AB = BQ. Prove that DQ = CP. -Maths 9th

Last Answer : In △PAD, ∠A = 90° and DA = PA = PB ⇒ ∠ADP = ∠APD = 90° / 2 = 45° Similarly, in △QBC, ∠B = 90° and BQ = BC = AB ⇒∠BCQ = ∠BQC = 90° / 2 = 45° In △PAD and △QBC , we have PA = QB [given] ∠A = ... [each = 90° + 45° = 135°] ⇒ △PDC = △QCD [by SAS congruence rule] ⇒ PC = QD or DQ = CP

Description : The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only, if -Maths 9th

Last Answer : According to question mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is a square. E and F are respectively the mid-points of BC and CD. -Maths 9th

Last Answer : According to question prove that ar (ΔAER) = ar (ΔAFR).

Description : ABCD is a square. E and F are respectively the mid - points of BC and CD. If R is the mid point of EF. -Maths 9th

Last Answer : Since R is the mid point of EF . ∴ AR is the median in △AEF. As, a median of a triangle divides it into two triangles of equal area . ∴ ar(△AER) = ar(△AFR)

Description : In the given figure, ABCD is a square. Side AB is produced to points P and Q in such a way that PA = AB = BQ. Prove that DQ = CP. -Maths 9th

Last Answer : In △PAD, ∠A = 90° and DA = PA = PB ⇒ ∠ADP = ∠APD = 90° / 2 = 45° Similarly, in △QBC, ∠B = 90° and BQ = BC = AB ⇒∠BCQ = ∠BQC = 90° / 2 = 45° In △PAD and △QBC , we have PA = QB [given] ∠A = ... [each = 90° + 45° = 135°] ⇒ △PDC = △QCD [by SAS congruence rule] ⇒ PC = QD or DQ = CP

Description : The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only, if -Maths 9th

Last Answer : According to question mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is a square. E and F are respectively the mid-points of BC and CD. -Maths 9th

Last Answer : According to question prove that ar (ΔAER) = ar (ΔAFR).

Description : ABCD is a square. P, Q, R, S are the mid-points of AB, BC, CD and DA respectively. By joining AR, BS, CP, DQ, we get a quadrilateral which is a -Maths 9th

Last Answer : According to the given statement, the figure will be a shown alongside; using mid-point theorem: In △ABC,PQ∥AC and PQ=21 AC .......(1) In △ADC,SR∥AC and SR=21 AC .... ... are perpendicular to each other) ∴PQ⊥QR(angle between two lines = angle between their parallels) Hence PQRS is a rectangle.

Description : (0, –1) and (0, 3) are the two opposite vertices of a square. The other two vertices are: -Maths 9th

Last Answer : (c) (15, 19)Let Δ(a, b) be the fourth vertex of the parallelogram ABCD. The diagonals of a parallelogram bisect each other at point O (say), so the diagonals AC and BD have the same mid-point.

Description : Without using Pythagoras’ theorem, show that the points A (0, 4), B(1, 2) and C(3, 3) are the vertices of a right angle triangle. -Maths 9th

Last Answer : Slope (m) = \(rac{(y_2-y_1)}{(x_2-x_1)}\) = \(rac{6-2}{5-1}\) = \(rac{4}{4}\) = 1Also slope (m) = tan θ, where θ is the inclination of the line to the positive direction of the x-axis in the anticlockwise direction. tan θ = 1 ⇒ θ = tan –11 = 45º.

Description : Prove that the points (2, –2), (–2, 1) and (5, 2) are the vertices of a right angled triangle. Also find the length of the hypotenuse -Maths 9th

Last Answer : Let the co-ordinates of any point on the x-axis be (x, 0). Then distance between (x, 0) and (– 4, 8) is 10 units.⇒ \(\sqrt{(x+4)^2+(0-8)^2}\) = 10 ⇒ x2 + 8x + 16 + 64 = 100 ⇒ x2 + 8x – 20 = 0 ⇒ (x + 10) (x – 2) = 0 ⇒ x = –10 or 2 ∴ The required points are (– 10, 0) and (2, 0).

Description : Plot the point A(2,0), B(5,0) and C(5,3). Find the coordinates of the point D such that ABCD is a square. -Maths 9th

Last Answer : Solution :-

Description : Prove that the points (1, –1) ((-1/2),(1/2)) and (1, 2) are the vertices of an isosceles triangle. -Maths 9th

Last Answer : (x, y) is equidistant from the points (2, 1) and (1, –2) ⇒ Distance between (x, y) and (2, 1) = Distance between (x, y) and (1, –2)⇒ \(\sqrt{(x-2)^2+(y-1)^2}\) = \(\sqrt{(x-1)^2+(y+2)^2}\)⇒ x2 – 4x + 4 + y2 – 2y + 1 = x2 – 2x + 1 + y2 + 4y + 4⇒ – 4x + 2x – 2y – 4y = 0 ⇒ –2x – 6y = 0 ⇒ x + 3y = 0

Description : Write the coordinates of two points on X-axis and two points on Y-axis which are at equal distances from the origin. Connect all these points and make them as vertices of quadrilateral. Name the quadrilateral thus formed. -Maths 9th

Last Answer : Let a be the equal distance from origin on both axes. Now, the coordinates of two points on equal distance 'a'on x-axis are Pla, 0) and R(-a, 0). Also, the coordinates of two points on equal distance 'a' on Y-axis are Q(0, a) and S(0, -a). Join all the four points on the graph.

Description : 5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively. To show, AF and EC trisect the diagonal BD. Proof, ABCD is a parallelogram , AB || CD also, ... (i), DP = PQ = BQ Hence, the line segments AF and EC trisect the diagonal BD. Hence Proved.

Description : ABCD is a rectangle formed by the points A(–1, –1), B(–1, 4), C(5, 4) and D(5, –1). P, Q, R and S are mid-points -Maths 9th

Last Answer : (b) RhombusAB = \(\sqrt{(3-1)^2+(5-1)^2}\) = \(\sqrt{4+16}\) = \(\sqrt{20}\) = \(2\sqrt5\)BC = \(\sqrt{(1-5)^2+(1-3)^2}\) = \(\sqrt{16+4}\) = \(\sqrt{20}\) = \(2\sqrt5\)CD = \ ... = \(6\sqrt2\)Now, AB = BC = CD = AD ⇒ All sides are equal Also, AC ≠ BD ⇒ Diagonals are not equal. ⇒ ABCD is a rhombus.

Description : ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that: (i) ABCD is a square (ii) Diagonal BD bisects ∠B as well as ∠D. -Maths 9th

Last Answer : Solution: (i) ∠DAC = ∠DCA (AC bisects ∠A as well as ∠C) ⇒ AD = CD (Sides opposite to equal angles of a triangle are equal) also, CD = AB (Opposite sides of a rectangle) ,AB = BC = CD = AD Thus ... interior angles) ⇒ ∠CBD = ∠ABD Thus, BD bisects ∠B Now, ∠CBD = ∠ADB ⇒ ∠CDB = ∠ADB Thus, BD bisects ∠D

Description : In trapezium ABCD, AB|| DC and diagonals AC and BD intersect at O. If area of triangle AOD is 30cm square , find the area of triangle BOC -Maths 9th

Last Answer : In the given figure: Area of triangle ADC = Area of triangle BCD (Triangles on the same and parallel) Now subtract the area of triangle DOC from both of them so... (Area of triangle ADC - Area of ... => Area of triangle AOD = Area of triangle BOC Hence the area of triangle BOC is 30 cm square.

Description : In trapezium ABCD, AB|| DC and diagonals AC and BD intersect at O. If area of triangle AOD is 30cm square , find the area of triangle BOC -Maths 9th

Last Answer : In the given figure: Area of triangle ADC = Area of triangle BCD (Triangles on the same and parallel) Now subtract the area of triangle DOC from both of them so... (Area of triangle ADC - Area of ... => Area of triangle AOD = Area of triangle BOC Hence the area of triangle BOC is 30 cm square.

Description : How much paper of each shade is needed to make a kite given in figure, in which ABCD is a square with diagonal 44 cm. -Maths 9th

Last Answer : NEED ANSWER

Description : How much paper of each shade is needed to make a kite given in figure, in which ABCD is a square with diagonal 44 cm. -Maths 9th

Last Answer : According to question ABCD is a square with diagonal 44 cm.

Description : O is a point in the interior of a square ABCD such that OAB is an equilateral triangle.Show that △OCD is an isosceles triangle. -Maths 9th

Last Answer : Solution :-

Description : In Fig. 8.12, ABCD is a square. Find x. -Maths 9th

Last Answer : Solution :-

Description : ABCD is a square of side a cm. AB, BC, CD and AD are all chords of circles with equal radii each. -Maths 9th

Last Answer : (b) \(\bigg[a^2+4\bigg[rac{\pi{a}^2}{9}-rac{a^2}{4\sqrt3}\bigg]\bigg]\)As shown in the given figures, if a' is each side of the square, then ∠DOC = 120º ⇒ ∠ODC = ∠OCD = 30ºNow in fig. (iii), \(rac{ ... of square + Total area of 4 segments = \(a^2+4\bigg(rac{\pi{a}^2}{9}-rac{a^2}{4\sqrt3}\bigg).\)

Description : ABCD is a square. Another square EFGH with the same area is placed on the square ABCD such that the point of intersection of diagonals of square -Maths 9th

Last Answer : (a) 32 (2 - √2)As is seen in the given figure, the sides of one square are parallel to the diagonals of another square. Also, square ABCD and EFGH have same area.⇒ Sides of square ABCD and square EFGH are 4 cm each. Let ... four Δs outside ABCD= 16 +16 (3 -2√2)= 16 + (4 - 2√2) = 32 (2 - √2) cm2.

Description : Let X be any point within a square ABCD. On AX a square AXYZ is described such that D is within it. Which one of the following is correct? -Maths 9th

Last Answer : answer:

Description : A rigid square plate ABCD of unit side rotates in its own plane about the middle-point of CD until the new position of A coincides with -Maths 9th

Last Answer : answer:

Description : A square sheet of paper ABCD is so folded that B falls on the mid-point M of CD. The crease will divide BC in the ratio -Maths 9th

Last Answer : answer:

Description : 3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Construction, Join AC and BD. To Prove, PQRS is a rhombus. Proof: In ΔABC P and Q ... (ii), (iii), (iv) and (v), PQ = QR = SR = PS So, PQRS is a rhombus. Hence Proved

Description : 2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. To Prove, PQRS is a rectangle. Construction, Join AC and BD. Proof: In ΔDRS and ... , In PQRS, RS = PQ and RQ = SP from (i) and (ii) ∠Q = 90° , PQRS is a rectangle.

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ . -Maths 9th

Last Answer : Join AQ and PC . Since ABCD is a parallelogram . ⇒ AB | | DC ⇒ AP | | QC ∵ AP and QC are parts of AB and DC respectively] Also, AP = CQ [given] Thus, APCQ is a parallelogram . We know that diagonals of a parallelogram bisect each other . Hence AC and PQ bisect each other .

Description : In quadrilateral ABCD of the given figure, X and Y are points on diagonal AC such that AX = CY and BXDY ls a parallelogram. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : ABCD is a trapezium with parallel sides AB = a cm and DC = b cm . E and F are the mid - points of the non - parallel sides . -Maths 9th

Last Answer : Clearly, EF = AB + DC / 2 = a + b / 2 Let h be the height , then ar(Trap. ABFE) : ar(Trap. EFCD) ⇒ 1/2 [a + (a+b / 2)] × h : 1/2 [b + (a+b / 2)] × h ⇒ 2a + a + b / 2 : 2b + a + b / 2 ⇒ 3a + b : 3b + a

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : E and F are points on diagonal AC of a parallelogram ABCD such that AE = CF. -Maths 9th

Last Answer : According to question diagonal AC of a parallelogram ABCD such that AE = CF.