A carriage spring is designed on the basis of
(a) Shear
(b) Compression
(c) Bending
(d) None

1 Answer

Answer :

(c) Bending

Related questions

Description : A open helical spring under axial torque is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : d) None

Description : A closed helical spring under axial torque is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : (c) Bending

Description : A closed helical spring under axial load is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : (a) Shear

Description : A beam is designed on the basis of a. Maximum bending moment b. Minimum shear force. c.Maximum bending moment as well as for maximum shear force d. None.

Last Answer : c.Maximum bending moment as well as for maximum shear force

Description : A transmission shaft subjected to bending loads must be designed on the basis of (a) maximum normal stress theory (b) maximum shear stress theory (c) maximum normal stress and maximum shear stress theories (d) fatigue strength

Last Answer : (a) maximum normal stress theory

Description : Wahl’s stress concentration factor is used in close coiled springs under axial load to account for (a) Shear effect (b) Bending effect (c) Compression effect (d) none

Last Answer : (b) Bending effect

Description : Under sagging bending moment, the uppermost fiber of the beam is in (a) Shear (b) Compression (c) Tension (d) None)

Last Answer : (b) Compression

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : A close coiled spring under axial load produces (a) Bending stresses (b) Shear stresses (c) Tensile stresses (d) None

Last Answer : (b) Shear stresses

Description : When a close-coiled helical spring is subjected to an axial load, it is said to be under. (a) Bending (b) Shear (c) Torsion (d) Crushing

Last Answer : (c) Torsion

Description : eaf springs are designed on the basis of (a) Maximum bending stresses (b) Maximum deflection (c) Maximum bending as well as maximum deflection (d) None

Last Answer : (c) Maximum bending as well as maximum deflection

Description : A compression spring is made of music wire of 2 mm diameter having a shear strength and shear modulus of 800 Mpa and 80 Gpa respectively. The mean coil diameter is 20mm, free length is 40 mm, and the number ... by 8 times b. decreased by 2 times c. increased by 2 times d. decreased by 8 times

Last Answer : a. increased by 8 times

Description : A close coiled helical spring is compressed. Its wire is subjected to A. Compression B. Tension C.Shear D. Torque

Last Answer : B. Tension

Description : Find the shear stress in the spring wire used to design a helical compression sprig if a load of 1200N is applied on the spring. Spring index is 6, and wire diameter 7mm. a) 452.2N/mm² b) 468.6N/mm² c) 512.2N/mm² d) None of the listed

Last Answer : b) 468.6N/mm²

Description : Coil springs absorb shocks by (a) bending (b) twisting (c) compression (d) tension

Last Answer : (c) compression

Description : Leaf springs absorb shocks by (a) bending (b) twisting (c) compression (d) tension

Last Answer : a) bending

Description : Coil springs absorb shocks by (A) bending (B) twisting (C) compression (D) tension

Last Answer : (C) compression

Description : When the helical compression spring is subjected to axial compressive force, the type of stress induced in the spring wire is, (A) Tensile stress (B) Compressive stress (C) Bending stress (D) Torsional shear stress

Last Answer : (D) Torsional shear stress

Description : When a column is subjected to an eccentric load, the stress induced in the column will be (a) direct stress only (b) bending stress only (c) shear stress only (d) direct and bending stress both

Last Answer : (d) direct and bending stress both

Description : Deflection due to shear force as compared to bending moment will be a.equal b.less c.More d.None.

Last Answer : b.less

Description : Torque and bending moment of 100 kN.m and 200 kN.m acts on a shaft which has external diameter twice of internal diameter. What is the external diameter of the shaft which is subjected to a maximum shear stress of 90 N/mm2? a. 116.5 mm b. 233.025 mm c. 587.1 mm d. 900 mm

Last Answer : c. 587.1 mm

Description : What is the maximum shear stress induced in a solid shaft of 50 mm diameter which is subjected to both bending moment and torque of 300 kN.mm and 200 kN.mm respectively? a. 9.11 N/mm2 b. 14.69 N/mm2 c. 16.22 N/mm2 d. 20.98 N/mm2

Last Answer : b. 14.69 N/mm2

Description : The ratio of maximum bending stress to maximum shear stress on the cross section when a shaft is simultaneously subjected to a torque T and bending moment M, a. T/M b. M/T c. 2T/M d. 2M/T

Last Answer : d. 2M/T

Description : A beam of uniform strength has a. same cross-section throughout the beam b. same bending stress at every section c. same bending moment at every section d. same shear stress at every section

Last Answer : b. same bending stress at every section

Description : Relation between bending moment and shear force is (a) dM/dx = -Vx (b) dM/dx = ±Vx (c) dM/dx = Vx (d) None

Last Answer : (c) dM/dx = Vx

Description : The graphical representation of variation of axial load on y axis and position of cross section along x axis is called as _____ (a) Bending moment diagram (b) Shear force diagram (c) Stress-strain diagram (d) Trust diagram

Last Answer : (d) Trust diagram

Description : The slope of shear force line at any section of the beam is also called (a) Bending moment at that section (b) Rate of loading at that section (c) Maximum Shear force (d) Maximum bending moment

Last Answer : (b) Rate of loading at that section

Description : Point of contra-flexure is also called (a) Point of maximum Shear force (b) Point of maximum Bending moment (c) Point of inflexion (d) Fixed end

Last Answer : (c) Point of inflexion

Description : Point of contra-flexure is a (a) Point where Shear force is maximum (b) Point where Bending moment is maximum (c) Point where Bending moment is zero (d) Point where Bending moment=0 but also changes sign from positive to negative

Last Answer : (d) Point where Bending moment=0 but also changes sign from positive to negative

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : The rate of change of bending moment is equal to (a) Shear force (b) Slope (c) Deflection (d) None of these

Last Answer : (a) Shear force

Description : Which of the following is incorrect? a. In torsion equation, we use mean torque b. In torsion equation, we use maximum torque c. Many shafts are designed under combined bending and torsion load d. Shafts are also designed for torsional rigidity

Last Answer : a. In torsion equation, we use mean torque

Description : Which of the machine component is designed under bending stress? a. Shaft b. Arm of a lever c. Key d. Belts and ropes

Last Answer : b. Arm of a lever

Description : A transmission shaft subjected to pure bending moment should be designed on the basis of (A) Maximum principal stress theory (B) Maximum shear stress theory (C) Distortion energy theory (D) Goodman or Soderberg diagrams

Last Answer : (A) Maximum principal stress theory

Description : A thin cylindrical shell under internal pressure can fail by a. Shear b. Compression c. Tension d. None

Last Answer : c. Tension

Description : Maximum bending stress in a leaf spring is (a) 3WL/4nbt2(b) 3WL/8nbt2(c) 3WL/2nbt2(d) None

Last Answer : (c) 3WL/2nbt2

Description : In a square and ground helical spring the effective number of turns is incresead by a. 1 b. 2 c. 1.5 d. 0 Ans: b 77. Frequency of the fluctuating load of helical compression ... vibration c. slightly greater than the natural frequency d. twenty times less than the natural frequency of vibration

Last Answer : d. twenty times less than the natural frequency of vibration

Description : The spring constant of a helical compression spring does not depend on a. Coil diameter b. Material strength c. Number of active turns d. wire diameter

Last Answer : b. Material strength

Description : Determine number of coils in a helical compression spring, if modulus of rigidity is 80 Gpa and spring stiffness is 50 N/ mm. Assume wire diameter and spring index as 8 mm and 5 respectively a. 11.8 turns b. 12.8 turns c. 13.3 turns d. None of the above

Last Answer : b. 12.8 turns

Description : The type of stress induced in a closed coiled helical tension spring is a. tensile b. compressive c. torsional shear d. tensile and compressive

Last Answer : c. torsional shear

Description : When two helical springs of equal lengths are arranged to form a cluster spring, then a. Shear stress in each spring will be equal b. Load taken by each spring will be half the total load c. Only A is correct d. Both A and B is correct

Last Answer : d. Both A and B is correct

Description : Shear stress in a close coiled helical spring is (a) 16WD/π d3 (b) 32WD/π d3 (c) 8WD/π d3 (d) None

Last Answer : (c) 8WD/π d3

Description : A spring is designed for (a) Higher strength (b) Higher deflection (c) Higher stiffness (d) None

Last Answer : (b) Higher deflection

Description : A beam is designed on the basis of a. Maximum deflection. b.Minimum deflection c.Maximum slope d.None.

Last Answer : a. Maximum deflection.

Description : A power transmitting ductile material shaft under P, T and M will be designed on the basis of (a) Rankine theory (b) Guest Theory (c) Haigh theory (d) None

Last Answer : (b) Guest Theory

Description : .The shafts are designed on the basis of (a) Rigidity (b) Strength (c) Both of these (d) Either of these

Last Answer : (c) Both of these

Description : The shafts are designed on the basis of a. strength and rigidity. b. ductility. c. malleablility. d. resilience.

Last Answer : a. strength and rigidity.

Description : The bolt is subjected to __________ when the nut is tightened by putting the washer beneath it. (A) Tension (B) Shear (C) Compression (D) Bending & tension

Last Answer : Option A