One of the following is not a solid-state optical detector
∙ a. APD  
∙ b. PIN  
∙ c. PMT  
∙ d. Phototransistors

1 Answer

Answer :

. PMT

Related questions

Description : Which optical detector is used when high sensitivity and bandwidth are required? ∙ a. PMT ∙ b. APD ∙ c. PIN ∙ d. Phototransistor

Last Answer : a. PMT

Description : . Is a non-coherent light source foe optical communications system. ∙ a. ILD ∙ b. LED ∙ c. APD ∙ d. PIN Diode

Last Answer : ∙ b. LED

Description : A pn-junction diode emits light by spontaneous emission ∙ A. LED ∙ B. APD ∙ C. PIN

Last Answer : A. LED

Description : Which of the following is used as an optical receiver in fiber optics communications ∙ a. APD ∙ b. Tunnel diode ∙ c. Laser diode ∙ d. LED

Last Answer : a. APD

Description : Which of the following is NOT a common light detector ∙ a. PIN photodiode ∙ b. Photovoltaic diode ∙ c. Photodiode ∙ d. Avalanche photodiode

Last Answer : ∙ b. Photovoltaic diode

Description : APD stands for: a. Avalanche Photodiode b. Advanced Photodiode c. Avalanche Photo Detector d. Advanced Photo Detector

Last Answer : a. Avalanche Photodiode

Description : The minimum optical power a light detector can receive and still produce a usable electrical output signal. ∙ A. light responsivity ∙ B. light sensitivity ∙ C. light collectivity ∙ D. illumination

Last Answer : B. light sensitivity

Description : The term responsivity as it applies to a light detector is best described as ∙ A. the time required for the signal to go from 10 to 90 percent of maximum amplitude ∙ B. the ratio of the diode ... . the ratio of the input power to output power ∙ D. the ratio of output current to input current

Last Answer : the ratio of the diode output current to the input optical power

Description : The three major groups of the optical system are ∙ A. the components, the data rate and the response time ∙ B. the source, the link and the receiver ∙ C. the transmitter, the cable and the receiver ∙ D. the source, the link and the detector

Last Answer : B. the source, the link and the receiver

Description : In solid-state optical detectors, the excited charge is transported in the solid by ∙ a. Holes and protons ∙ b. Holes and electrons ∙ c. Anion and cation ∙ d. Protons and photons

Last Answer : ∙ b. Holes and electrons

Description : When connector losses, splice losses and coupler losses are added, what is the limiting factor? ∙ A. source power ∙ B. fiber attenuation ∙ C. connector and splice loss ∙ D. detector sensitivity

Last Answer : D. detector sensitivity

Description : How can modal dispersion reduced entirely? ∙ A. Use a graded index fiber ∙ B. Use a single-mode fiber ∙ C. Use a monochromatic light source ∙ D. Use a very sensitive light detector

Last Answer : Use a single-mode fiber

Description : Chromatic dispersion can be eliminated by __________. ∙ A. using a monochromatic light source ∙ B. using a very small numerical aperture fiber ∙ C. using a graded-index fiber ∙ D. using a very sensitive photo detector

Last Answer : A. using a monochromatic light source

Description : The _____ of a detector is the fraction of incident photons that produce a photoelectron or electron-hole pair ∙ a. Responsitivity ∙ b. Photon efficiency ∙ c. Aperture ∙ d. Quantum efficiency

Last Answer : d. Quantum efficiency

Description : What parameter of light detector determines the range or system length that can be achieved for a given wavelength? ∙ a. Transit time ∙ b. Spectral response ∙ c. Dark current ∙ d. Responsitivity

Last Answer : ∙ b. Spectral response

Description : Which of the following is the fastest light sensor? ∙ A. PIN photodiode ∙ B. Photovoltaic diode ∙ C. Photodiode ∙ D. Avalanche photodiode

Last Answer : Avalanche photodiode

Description : Which of the following is the fastest light sensor? ∙ A. PIN photodiode ∙ B. Photovoltaic diode ∙ C. Photodiode ∙ D. Avalanche photodiode

Last Answer : D. Avalanche photodiode

Description : Which of the following is the fastest light sensor ∙ a. PIN photodiode ∙ b. Photovoltaic diode ∙ c. Phototransistor ∙ d. Avalanche photodiode

Last Answer : ∙ d. Avalanche photodiode

Description : Which of the following is used as an optical transmitter on the Fiber Optical Communications? a. APD b. LSA diode c. PIN diode d. LED

Last Answer : d. LED

Description : Is a non-coherent light source foe optical communications system. a. ILD b. LED c. APD d. PIN Diode

Last Answer : b. LED

Description : A non-coherent light source for optical communications system. A. PIN Diode B. ILD C. APD D. LED

Last Answer : D. LED

Description : Which of the following is not a part of the optical spectrum? ∙ A. infrared ∙ B. ultraviolet ∙ C. visible color ∙ D. x-rays

Last Answer : ∙ D. x-rays

Description : For a 300-m optical fiber cable with a bandwidth distance product of 600 MHz-km, determine the bandwidth. ∙ A. 5 GHz ∙ B. 1 GHz ∙ C. 2 GHz

Last Answer : C. 2 GHz

Description : Light rays that are emitted simultaneously from an LED and propagated down an optical fiber do not arrive at the far end of the fiber at the same time results to ∙ A. intramodal dispersion ∙ B. pulse length dispersion ∙ C. modal dispersion ∙ D. wavelength dispersion

Last Answer : D. wavelength dispersion

Description : For a single mode optical cable with 0.25 dB/km loss, determine the optical power 100 km from a 0.1-mW light source. ∙ A. -45 dBm ∙ B. -15 dBm ∙ C. -35 dBm

Last Answer : ∙ C. -35 dBm

Description : A type of index of an optical fiber that has no cladding and whose central core has a non-uniform refractive index. ∙ A. graded index ∙ B. multimode ∙ C. single mode ∙ D. step-index

Last Answer : ∙ A. graded index

Description : A type of index profile of an optical fiber that has a central core and outside cladding with a uniform refractive index ∙ A. multimode ∙ B. graded index ∙ C. step-index ∙ D. single mode

Last Answer : ∙ C. step-index

Description : Optical power is sometimes called __________. ∙ A. Radiant emission ∙ B. Radiant power ∙ C. Radiant flux ∙ D. Radiant optics

Last Answer : C. Radiant flux

Description : It is described as the flow of light energy past a given point in a specified time ∙ A. Optical radiation ∙ B. Optical impedance ∙ C. Optical illusion ∙ D. Optical power

Last Answer : D. Optical power

Description : In radiometric terms, it measures the rate at which electromagnetic waves transfer light energy ∙ A. Optical radiation ∙ B. Optical impedance ∙ C. Optical illusion ∙ D. Optical power

Last Answer : D. Optical power

Description : Developed an optical fiber with losses less that 2 dB/km ∙ A. Kao and Bockham ∙ B. Maiman, Kao and Bockham ∙ C. Maiman and Schawlow ∙ D. Kapron, Keck and Maurer

Last Answer : ∙ A. Kao and Bockham

Description : The scientist who built the first optical maser ∙ A. Charles Townes ∙ B. GA Bockham ∙ C. Theodore Maiman ∙ D. ACS Van Heel

Last Answer : ∙ C. Theodore Maiman

Description : Approximately what is the frequency limit of the optical fiber? ∙ A. 20 MHz ∙ B. 1 MHz ∙ C. 100 MHz ∙ D. 40 GHz

Last Answer : ∙ D. 40 GHz

Description : Which modulation methods are the most widely used in optical systems? ∙ a. Phase and frequency modulations ∙ b. Polarization modulation and phase modulation ∙ c. Intensity modulation and phase modulation ∙ d. Intensity modulation and polarization modulation

Last Answer : Intensity modulation and polarization modulation

Description : Used to test a fiber optics splice ∙ a. Spectrum analyzer ∙ b. Oscilloscope ∙ c. Optical power meter ∙ d. Field strength meter

Last Answer : c. Optical power meter

Description : What is the frequency limit of an optical fiber? ∙ a. 20 GHz ∙ b. 30 GHz ∙ c. 40 GHz ∙ d. 50 GHz

Last Answer : ∙ c. 40 GHz

Description : The _____ is equal to the number of electrons emitted per second times the electron charge ∙ a. Intensity ∙ b. Optical power ∙ c. Photocurrent ∙ d. Responsitivity

Last Answer : c. Photocurrent

Description : Optical detectors are square-law devices because they respond to _____ rather than amplitude ∙ a. Intensity ∙ b. Light ∙ c. Density ∙ d. Photon

Last Answer : a. Intensity

Description : Optical fibers for telecommunications are typically about _____ mils thick and consists of a glass core, a glass cladding of lower index of refraction, and a protective coating ∙ a. 5 ∙ b. 6 ∙ c. 7 ∙ d. 8

Last Answer : ∙ a. 5

Description : Light traveling in optical fiber follows which of the following principles. ∙ a. Huygen’s principle ∙ b. Reflection theory ∙ c. Light theory ∙ d. Snell’s law

Last Answer : d. Snell’s law

Description : An increase in light intensity produces fast optic switching due to ∙ a. Increase in index of glass ∙ b. Amplification of optical signal ∙ c. High gain ∙ d. Photoconductivity

Last Answer : b. Amplification of optical signal

Description : Optical cable testers are used for ∙ a. Checking refractive index ∙ b. Light power out of a fiber ∙ c. Non-calibrated light into a fiber

Last Answer : b. Light power out of a fiber

Description : Optical cable testers are used for ∙ a. Checking refractive index ∙ b. Light power out of a fiber ∙ c. Non-calibrated light into a fiber

Last Answer : ∙ b. Light power out of a fiber

Description : An IC that represents a short distance one-way optical communications ∙ a. Optoisolator ∙ b. Insulator ∙ c. Multivibrator ∙ d. Optical IC

Last Answer : a. Optoisolator

Description : Which is not a possible cause of optical fiber loss? ∙ a. Impurities ∙ b. Glass attenuation ∙ c. Stepped index operation ∙ d. Microbending

Last Answer : ∙ c. Stepped index operation

Description : The graded-index multimode optical fiber has a core diameter of _____ nm. ∙ a. 0.5 ∙ b. 0.05 ∙ c. 0.0005 ∙ d. 5

Last Answer : ∙ a. 0.5

Description : A step-index multimode optical fiber has a core diameter of _____ nm. ∙ a. 0.02 ∙ b. 0.2 ∙ c. 2 ∙ d. 0.002

Last Answer : b. 0.2

Description : A single mode optical fiber has a core diameter of _____ nm. ∙ a. 0.1 ∙ b. 0.01 ∙ c. 0.2 ∙ d. 0.05

Last Answer : a. 0.1

Description : OTDR stands for ∙ a. Optical Time Domain Reflectometer ∙ b. Optical Transmit Direction Return ∙ c. Optical Time Domain Time Regeneration ∙ d. Overtime Direct Reference

Last Answer : c. Optical Time Domain Time Regeneration