Which optical detector is used when high sensitivity and bandwidth are required? ∙ a. PMT  
∙ b. APD  
∙ c. PIN  
∙ d. Phototransistor

1 Answer

Answer :

a. PMT

Related questions

Description : One of the following is not a solid-state optical detector ∙ a. APD ∙ b. PIN ∙ c. PMT ∙ d. Phototransistors

Last Answer : . PMT

Description : . Is a non-coherent light source foe optical communications system. ∙ a. ILD ∙ b. LED ∙ c. APD ∙ d. PIN Diode

Last Answer : ∙ b. LED

Description : Which of the following is the fastest light sensor ∙ a. PIN photodiode ∙ b. Photovoltaic diode ∙ c. Phototransistor ∙ d. Avalanche photodiode

Last Answer : ∙ d. Avalanche photodiode

Description : The minimum optical power a light detector can receive and still produce a usable electrical output signal. ∙ A. light responsivity ∙ B. light sensitivity ∙ C. light collectivity ∙ D. illumination

Last Answer : B. light sensitivity

Description : A pn-junction diode emits light by spontaneous emission ∙ A. LED ∙ B. APD ∙ C. PIN

Last Answer : A. LED

Description : Which of the following is used as an optical receiver in fiber optics communications ∙ a. APD ∙ b. Tunnel diode ∙ c. Laser diode ∙ d. LED

Last Answer : a. APD

Description : The term responsivity as it applies to a light detector is best described as ∙ A. the time required for the signal to go from 10 to 90 percent of maximum amplitude ∙ B. the ratio of the diode ... . the ratio of the input power to output power ∙ D. the ratio of output current to input current

Last Answer : the ratio of the diode output current to the input optical power

Description : When connector losses, splice losses and coupler losses are added, what is the limiting factor? ∙ A. source power ∙ B. fiber attenuation ∙ C. connector and splice loss ∙ D. detector sensitivity

Last Answer : D. detector sensitivity

Description : Which of the following is NOT a common light detector ∙ a. PIN photodiode ∙ b. Photovoltaic diode ∙ c. Photodiode ∙ d. Avalanche photodiode

Last Answer : ∙ b. Photovoltaic diode

Description : APD stands for: a. Avalanche Photodiode b. Advanced Photodiode c. Avalanche Photo Detector d. Advanced Photo Detector

Last Answer : a. Avalanche Photodiode

Description : The three major groups of the optical system are ∙ A. the components, the data rate and the response time ∙ B. the source, the link and the receiver ∙ C. the transmitter, the cable and the receiver ∙ D. the source, the link and the detector

Last Answer : B. the source, the link and the receiver

Description : For a 300-m optical fiber cable with a bandwidth distance product of 600 MHz-km, determine the bandwidth. ∙ A. 5 GHz ∙ B. 1 GHz ∙ C. 2 GHz

Last Answer : C. 2 GHz

Description : Which of the following contributes to the broadening of laser emission bandwidth? ∙ a. Doppler shift of moving atoms and molecules ∙ b. Amplification within the laser medium ∙ c. Coherence of the laser light ∙ d. Optical pumping of the laser transition

Last Answer : Doppler shift of moving atoms and molecules

Description : The bandwidth of optical fiber ∙ a. 900M Hz ∙ b. 900 PHz ∙ c. 900 THz ∙ d. 900 EHz

Last Answer : c. 900 THz

Description : The most common device used as a light detector in fiber optic communications system. A. LED B. Darlington phototransistor C. APDs D. PIN diode

Last Answer : C. APDs

Description : How can modal dispersion reduced entirely? ∙ A. Use a graded index fiber ∙ B. Use a single-mode fiber ∙ C. Use a monochromatic light source ∙ D. Use a very sensitive light detector

Last Answer : Use a single-mode fiber

Description : Chromatic dispersion can be eliminated by __________. ∙ A. using a monochromatic light source ∙ B. using a very small numerical aperture fiber ∙ C. using a graded-index fiber ∙ D. using a very sensitive photo detector

Last Answer : A. using a monochromatic light source

Description : The _____ of a detector is the fraction of incident photons that produce a photoelectron or electron-hole pair ∙ a. Responsitivity ∙ b. Photon efficiency ∙ c. Aperture ∙ d. Quantum efficiency

Last Answer : d. Quantum efficiency

Description : What parameter of light detector determines the range or system length that can be achieved for a given wavelength? ∙ a. Transit time ∙ b. Spectral response ∙ c. Dark current ∙ d. Responsitivity

Last Answer : ∙ b. Spectral response

Description : The main benefit of light wave communications over microwaves or any other communications media are ∙ A. lower cost ∙ B. better security ∙ C. wider bandwidth ∙ D. freedom from interface

Last Answer : C. wider bandwidth

Description : It indicates what signal frequencies can be propagated through a given distance of fiber cable. ∙ A. Bandwidth Distance Product ∙ B. Pulse width dispersion ∙ C. Rise time ∙ D. Cutoff frequency

Last Answer : A. Bandwidth Distance Product

Description : The energy of the photon is ∙ a. Directly proportional to its bandwidth ∙ b. Directly proportional to the Planck’s constant ∙ c. Directly proportional to Boltzmann’s constant ∙ d. Inversely proportional to the Planck’s constant

Last Answer : Directly proportional to the Planck’s constant

Description : The bandwidth of a fiber is limited by ∙ a. Mode ∙ b. Wavelength ∙ c. Dispersion ∙ d. Frequency

Last Answer : c. Dispersion

Description : How many longitudinal modes can fall within a laser’s gain bandwidth? ∙ a. 2 ∙ b. 5 ∙ c. 9 ∙ d. No fixed limit, dependent on bandwidth and mode spacing

Last Answer : ∙ d. No fixed limit, dependent on bandwidth and mode spacing

Description : The main benefit of light-wave communications over microwaves or any other communications media is ∙ a. Lower cost ∙ b. Better security ∙ c. Wider bandwidth ∙ d. Freedom from interference

Last Answer : c. Wider bandwidth

Description : Is the width of the range of wavelengths emitted by the light source ∙ a. Bandwidth ∙ b. Chromatic Dispersion ∙ c. Spectral width ∙ d. Beamwidth

Last Answer : c. Spectral width

Description : An increase in light intensity produces fast optic switching due to ∙ a. Increase in index of glass ∙ b. Amplification of optical signal ∙ c. High gain ∙ d. Photoconductivity

Last Answer : b. Amplification of optical signal

Description : Which of the following is the fastest light sensor? ∙ A. PIN photodiode ∙ B. Photovoltaic diode ∙ C. Photodiode ∙ D. Avalanche photodiode

Last Answer : Avalanche photodiode

Description : Which of the following is the fastest light sensor? ∙ A. PIN photodiode ∙ B. Photovoltaic diode ∙ C. Photodiode ∙ D. Avalanche photodiode

Last Answer : D. Avalanche photodiode

Description : Which of the following is used as an optical transmitter on the Fiber Optical Communications? a. APD b. LSA diode c. PIN diode d. LED

Last Answer : d. LED

Description : Is a non-coherent light source foe optical communications system. a. ILD b. LED c. APD d. PIN Diode

Last Answer : b. LED

Description : A non-coherent light source for optical communications system. A. PIN Diode B. ILD C. APD D. LED

Last Answer : D. LED

Description : Which of the following is not a part of the optical spectrum? ∙ A. infrared ∙ B. ultraviolet ∙ C. visible color ∙ D. x-rays

Last Answer : ∙ D. x-rays

Description : Light rays that are emitted simultaneously from an LED and propagated down an optical fiber do not arrive at the far end of the fiber at the same time results to ∙ A. intramodal dispersion ∙ B. pulse length dispersion ∙ C. modal dispersion ∙ D. wavelength dispersion

Last Answer : D. wavelength dispersion

Description : For a single mode optical cable with 0.25 dB/km loss, determine the optical power 100 km from a 0.1-mW light source. ∙ A. -45 dBm ∙ B. -15 dBm ∙ C. -35 dBm

Last Answer : ∙ C. -35 dBm

Description : A type of index of an optical fiber that has no cladding and whose central core has a non-uniform refractive index. ∙ A. graded index ∙ B. multimode ∙ C. single mode ∙ D. step-index

Last Answer : ∙ A. graded index

Description : A type of index profile of an optical fiber that has a central core and outside cladding with a uniform refractive index ∙ A. multimode ∙ B. graded index ∙ C. step-index ∙ D. single mode

Last Answer : ∙ C. step-index

Description : Optical power is sometimes called __________. ∙ A. Radiant emission ∙ B. Radiant power ∙ C. Radiant flux ∙ D. Radiant optics

Last Answer : C. Radiant flux

Description : It is described as the flow of light energy past a given point in a specified time ∙ A. Optical radiation ∙ B. Optical impedance ∙ C. Optical illusion ∙ D. Optical power

Last Answer : D. Optical power

Description : In radiometric terms, it measures the rate at which electromagnetic waves transfer light energy ∙ A. Optical radiation ∙ B. Optical impedance ∙ C. Optical illusion ∙ D. Optical power

Last Answer : D. Optical power

Description : Developed an optical fiber with losses less that 2 dB/km ∙ A. Kao and Bockham ∙ B. Maiman, Kao and Bockham ∙ C. Maiman and Schawlow ∙ D. Kapron, Keck and Maurer

Last Answer : ∙ A. Kao and Bockham

Description : The scientist who built the first optical maser ∙ A. Charles Townes ∙ B. GA Bockham ∙ C. Theodore Maiman ∙ D. ACS Van Heel

Last Answer : ∙ C. Theodore Maiman

Description : Approximately what is the frequency limit of the optical fiber? ∙ A. 20 MHz ∙ B. 1 MHz ∙ C. 100 MHz ∙ D. 40 GHz

Last Answer : ∙ D. 40 GHz

Description : Which modulation methods are the most widely used in optical systems? ∙ a. Phase and frequency modulations ∙ b. Polarization modulation and phase modulation ∙ c. Intensity modulation and phase modulation ∙ d. Intensity modulation and polarization modulation

Last Answer : Intensity modulation and polarization modulation

Description : Used to test a fiber optics splice ∙ a. Spectrum analyzer ∙ b. Oscilloscope ∙ c. Optical power meter ∙ d. Field strength meter

Last Answer : c. Optical power meter

Description : What is the frequency limit of an optical fiber? ∙ a. 20 GHz ∙ b. 30 GHz ∙ c. 40 GHz ∙ d. 50 GHz

Last Answer : ∙ c. 40 GHz

Description : The _____ is equal to the number of electrons emitted per second times the electron charge ∙ a. Intensity ∙ b. Optical power ∙ c. Photocurrent ∙ d. Responsitivity

Last Answer : c. Photocurrent

Description : Optical detectors are square-law devices because they respond to _____ rather than amplitude ∙ a. Intensity ∙ b. Light ∙ c. Density ∙ d. Photon

Last Answer : a. Intensity

Description : In solid-state optical detectors, the excited charge is transported in the solid by ∙ a. Holes and protons ∙ b. Holes and electrons ∙ c. Anion and cation ∙ d. Protons and photons

Last Answer : ∙ b. Holes and electrons