The modular ratio is the ration of
(a) Young’s modulus of steel to the young’s modulus of concrete
(b) Young’s modules of concrete to the young’s modulus of steel
(c) Load carried by steel to the load carried by concrete.
(d) Load carried by concrete to the load carried by step.

1 Answer

Answer :

(c) Load carried by steel to the load carried by concrete.

Related questions

Description : If C is creep coefficient, f is original pre-stress in concrete, m is modular ratio, E is Young's modulus of steel and e is shrinkage strain, the combined effect of creep and shrinkage is: (A) (1 - C)mf - eE B) (C - 1)mf + eE (C) (C - 1)mf - eE (D) (1 - C)mf + eE

Last Answer : Answer: Option B

Description : Steel rods are normally used for concrete reinforcement because concrete and steel have almost equal (A) Tensile strength (B) Compressive strength (C) Young's modulus (D) Thermal co-efficient of expansion

Last Answer : (D) Thermal co-efficient of expansion

Description : The Young's modulus of elasticity of steel, is (A) 150 KN/mm2 (B) 200 KN/mm2 (C) 250 KN/mm2 (D) 275 KN/mm

Last Answer : Answer: Option D

Description : If permissible working stresses in steel and concrete are respectively 1400 kg/cm2 and 80 kg/cm2 and modular ratio is 18, in a beam reinforced in tension side and of width 30 cm and having effective depth 46 cm, the lever arms of the section, is (A) 37 cm (B) 38 cm (C) 39 cm (D) 40 cm

Last Answer : Answer: Option D

Description : A singly reinforced concrete beam of 25 cm width and 70 cm effective depth is provided with 18.75 cm2 steel. If the modular ratio (m) is 15, the depth of the neutral axis, is (A) 20 cm (B) 25 cm (C) 30 cm (D) 35 cm

Last Answer : Answer: Option C

Description : If Ac , Asc and A are areas of concrete, longitudinal steel and section of a R.C.C. column and m and c are the modular ratio and maximum stress in the configuration of concrete, the strength of column is (A) cAc + m cAsc (B) c (A - Asc) + m cAsc (C) c [A + (m - 1)ASC] (D) All the above

Last Answer : Answer: Option D

Description : A higher modular ratio shows (A) Higher compressive strength of concrete (B) Lower compressive strength of concrete (C) Higher tensile strength of steel (D) Lower tensile strength of steel

Last Answer : Answer: Option B

Description : The effective depth of a singly reinforced rectangular beam is 300mm. the section is over-reinforced and the neutral axis is 120mm below the top. If the maximum stress attained by concrete is 5N/mn2 and the modular ratio ... in the steel will (a) 130N/mm2 (b) 135N/mm2 (c) 160N/mm2 (d) 180N/mm2

Last Answer : (b) 135N/mm2

Description : An open-ended cylinder of radius and thickness is subjected to internal pressure . The Young's modulus for the material is and Poisson's ratio is . The longitudinal strain is (A) Zero (B) pr/TE (C) pr/2TE (D) None of these

Last Answer : (A) Zero

Description : For a given material, if E, C, K and m are Young's modulus, shearing modulus, bulk modulus and Poisson ratio, the following relation does not hold good (A) E = 9KC/3K + C (B) E = 2K (1 + 2/m) (C) E = 2C (1 + 1/m) (D) E = 3C (1 - 1/m)

Last Answer : (C) E = 2C (1 + 1/m)

Description : For a given material Young's modulus is 200 GN/m2 and modulus of rigidity is 80 GN/m2 . The value of Poisson's ratio is (A) 0.15 (B) 0.20 (C) 0.25 (D) 0.30

Last Answer : (C) 0.25

Description : A + (m - 1)ASC] known as equivalent concrete area of R.C.C. is given by (A) Modular ratio method (B) Load factor method (C) Ultimate load method (D) None of these

Last Answer : Answer: Option A

Description : Between 230 and 370°C, blue brittleness is caused in mild steel because of the (A) Immobility of dislocation (B) Strain-ageing (C) Increase in Young's modulus (D) Strain hardening

Last Answer : Option B

Description : 18.The total extension of a taper rod of length ‘L’ and end diameters ‘D1’ and ‘D2’, subjected to a load (P), is given of a. 4PL/ΠE. D1D2 b. 3PL/ΠE. D1D2 c. 2PL/ΠE. D1D2 d. PL/ΠE.D1D2 Where E=Young’s modulus of elasticity

Last Answer : a. 4PL/ΠE. D1D2

Description : The ratio of stress to strain i: a) Modulus of conductivity b) Modules of Elasticity c) Modulus of electricity d) Modulus of Viscosity

Last Answer : b) Modules of Elasticity

Description : Ratio of tensile to strain is A. Young's modulus B. stress C. stiffness D. tensile force

Last Answer : Young's modulus

Description : Factor of safety for fatigue loading is the ratio of (a) elastic limit to the working stress (b) Young's modulus to the ultimate tensile strength (c) endurance limit to the working stress (d) elastic limit to the yield point

Last Answer : (c) endurance limit to the working stress

Description : Which of the following relationships is correct for relating the three elastic constants of an isotropic elastic material (where, E = Young's modulus, G = Modulus of rigidity or shear modulus v = Poisson's ratio)? (A) E = 2G (1 + v) (B) E = G (1 + v) (C) E = G (1 + v)/2 (D) E = 2G (1 + 2v)

Last Answer : (A) E = 2G (1 + v)

Description : The ratio of stress to volumetric strain is called a) Shear Modulus b) Young’s Modulus c) Bulk Modulus d) Modulus of elasticity

Last Answer : c) Bulk Modulus

Description : The ratio of shear stress to shear strain is a) Shear modulus b)Young’s Modulus c) Bulk Modulus d)None of above

Last Answer : b)Young’s Modulus

Description : The relationship between Young’s modulus (E), Bulk modulus (K) and Poisson’s ratio (μ) is given by a. E=2K(1-2μ) b. E=3K(1-2μ) c. E=2K(1-2μ) d. E=2K(1-3μ)

Last Answer : b. E=3K(1-2μ)

Description : The assumption in the theory of bending of beams is:  (A) Material is homogeneous  (B) Material is isotropic  (C) Young's modulus is same in tension as well as in compression  (D) All the above 

Last Answer : (D) All the above 

Description : Strain energy of a member may be equated to  (A) Average resistance × displacement  (B) ½ stress × strain × area of its cross-section  (C) ½ stress × strain × volume of the member  (D) ½ (stress)2  × volume of the member + Young's modulus E

Last Answer : (D) ½ (stress)2  × volume of the member + Young's modulus E

Description : Pick up the correct assumption of the theory of simple bending  (A) The value of the Young's modulus is the same in tension as well as in compression  (B) Transverse section of a beam remains ... bending  (C) The material of the beam is homogeneous and isotropic  (D) All the above

Last Answer : (D) All the above

Description : extendible architecture is A. Modular design of a software application that facilitates the integration of new modules B. Showing a universal law or rule to be invalid by providing a counter example C. ... of attributes in a database table that refers to data in another table D. None of these

Last Answer : A. Modular design of a software application that facilitates the integration of new modules

Description : Falsification is A. Modular design of a software application that facilitates the integration of new modules B. Showing a universal law or rule to be invalid by providing a counter example C. A set of attributes in a database table that refers to data in another table D. None of these

Last Answer : B. Showing a universal law or rule to be invalid by providing a counter example

Description : Define Modules and modular co-ordination

Last Answer : Modules: Modules are a standard unit of size used to coordinate the dimensions of buildings and components. They are of two types: 1. Multi modules 2. Basic modules  Modular Co-ordination: The modular ... for basic module is M 1M = 100mm 100 mm = 1M = It is international standard value.

Description : If the permissible compressive stress for a concrete in bending is C kg/m2 , the modular ratio is (A) 2800/C (B) 2300/2C (C) 2800/3C (D) 2800/C

Last Answer : Answer: Option C

Description : The modular ratio m of a concrete whose permissible compressive stress is C, may be obtained from the equation. (A) m = 700/3C (B) m = 1400/3C (C) m = 2800/3C (D) m = 3500/3C

Last Answer : Answer: Option C

Description : If the permissible compressive stress for a concrete in bending is ckg/m2, the modular ratio is (a) 2800/C (b) 2300/C (c) 2800/3C (d) 2800/4C

Last Answer : (d) 2800/4C

Description : Consider the following statements: Percentage of steel for balanced designed of a singly reinforced rectangular section by limit state method depends on (1) Characteristic strength of concrete (2) Yield strength of concrete (3) Modulus of elasticity ... (b) 1, 3 and 4 (c) 1, 2 and 4 (d) 1, 2 and 3

Last Answer : 1,2,4

Description : If the modular ratio is , steel ratio is and overall depth of a beam is , the depth of the critical neutral axis of the beam, is (A) [m/(m - r)] d (B) [m/(m + r)] d (C) [(m + r)/m] d (D) [(r - m)/m] d

Last Answer : Answer: Option B

Description : If the permissible compressive and tensile stresses in a singly reinforced beam are 50 kg/cm2 and 1400 kg/cm2 respectively and the modular ratio is 18, the percentage area At of the steel required for an economic section, is (A) 0.496 % (B) 0.596 % (C) 0.696 % (D) 0.796 %

Last Answer : Answer: Option C

Description : What is the SI unit of Young’s modulus of elasticity? -Do You Know?

Last Answer : answer:

Description : What is Young’s modulus? Describe an experiment to find out Young’s modulus of material

Last Answer : What is Young’s modulus? Describe an experiment to find out Young’s modulus of material in the form of a long straight wire.

Description : Distinguish between Young’s modulus, bulk modulus and modulus of rigidity.

Last Answer : Distinguish between Young’s modulus, bulk modulus and modulus of rigidity.

Description : What is Young’s modulus of a rigid body?

Last Answer : What is Young’s modulus of a rigid body?

Description : If S is stress, Y is Young’s modulus of material of a wire, the energy stored in the wire per unit volume is (a) 2Y/S (b) S/2Y (c) 2S2Y (d) S2/2Y

Last Answer : Ans:(d)

Description : What is the SI unit of Young’s modulus of elasticity?

Last Answer : Newton/m2

Description : Which of the following mechanical properties of a material is most structure insensitive? (A) Modulus of elasticity (young's modulus) (B) Toughness (C) Percentage reduction of area (D) Tensile strength

Last Answer : (A) Modulus of elasticity (young's modulus)

Description : Dimensions of Young's modulus are A. [M]-1 [L]-1 [T]-2 B. [M]-1 [L]-2 [T]-2 C. [M] [L]-2 [T]-2 D. [M] [L]-1 [T]-2

Last Answer : [M] [L]-1 [T]-2

Description : Young's modulus is defined as A. tensile strain/tensile stress B. tensile stress/tensile strain C. tensile stress × tensile strain D. length/area

Last Answer : tensile stress/tensile strain

Description : While Young's modulus ‘E’ relates to change in length and bulk modulus ‘K’ relates to change in volume, modulus of rigidity ‘G’ relates to change in: A. weight B. density C. shape D. temperature

Last Answer : . shape

Description : The resistance to fatigue of a material is measured by (a) elastic limit (b) Young's modulus (c) ultimate tensile strength (d) endurance limit

Last Answer : (d) endurance limit

Description : A cantilever shaft having 50 mm diameter and a length of 300mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m^2. Determine the static deflection of shaft in mm. A 0.144 B 0.244 C 0.344 D 0.444

Last Answer : A 0.144

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free enD. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. A. 575B. 625 C. 525 D. 550

Last Answer : A. 575

Description : A cantilever shaft having 50 mm diameter and a length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 3 . Determine the static deflection of the shaft in mm. a) 0.147 b) 0.213 c) 0.132 d) 0.112

Last Answer : a) 0.147

Description : A cantilever shaft having 50 mm diameter and a length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Determine the frequency of transverse vibrations of the shaft. a) 31 b) 35 c) 37 d) 41

Last Answer : d) 41

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. a) 575 b) 625 c) 525 d) 550

Last Answer : a) 575

Description : A cantilever shaft has a diameter of 6 cm and the length is 40cm, it has a disc of mass 125 kg at its free end. The Young’s modulus for the shaft material is 250 GN/m2. Calculate the static deflection in nm. a) 0.001 b) 0.083c) 1.022 d) 0.065

Last Answer : a) 0.001