Which of the following variables controls the physical properties of a perfect gas
 (a) pressure
 (b) temperature
 (c) volume
 (d) all of the above
 (e) atomic mass.

1 Answer

Answer :

Answer : d

Related questions

Description : The behaviour of a perfect gas, undergoing any change in the variables which control physical properties, is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. all of these

Last Answer : Answer: D

Description : According to Gay-Lussac law for a perfect gas, the absolute pressure of given mass varies directly as  (a) temperature  (b) absolute  (c) absolute temperature, if volume is kept constant ... , if temperature is kept constant  (e) remains constant,if volume and temperature are kept constant.

Last Answer : Answer : c

Description : The absolute pressure of a given mass of a perfect gas varies inversely as its volume, when the temperature remains constant. This statement is known as Charles’ law.  A. Yes  B. No

Last Answer : Answer: B

Description : According to Gay-Lussac law, the absolute pressure of a given mass of a perfect gas varies __________ as its absolute temperature, when the volume remains constant.  A. directly  B. indirectly

Last Answer : Answer: A

Description : A perfect gas at 27°C is heated at constant pressure till its volume is double. The final temperature is  (a) 54°C  (b) 327°C  (c) 108°C  (d) 654°C  (e) 600°C

Last Answer : Answer : b

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : For a perfect gas, according to Boyle’s law (where p = Absolute pressure, v = Volume, and T = Absolute temperature)  A. p v = constant, if T is kept constant  B. v/T = constant, if p is kept constant  C. p/T = constant, if v is kept constant  D. T/p = constant, if v is kept constant

Last Answer : Answer: A

Description : According to which law, all perfect gases change in volume by l/273th of their original volume at 0°C for every 1°C change in temperature when pressure remains constant  (a) Joule’s law  (b) Boyle’s law  (c) Regnault’s law  (d) Gay-Lussac law  (e) Charles’ law.

Last Answer : Answer : e

Description : According to kinetic theory of gases, the absolute zero temperature is attained when  (a) volume of the gas is zero  (b) pressure of the gas is zero  (c) kinetic energy of the molecules is zero  (d) specific heat of gas is zero  (e) mass is zero.

Last Answer : Answer : c

Description : The temperatures of the ideal gas temperature scale are measured by using a ______.  A. Constant-volume gas thermometer  B. Constant-mass gas thermometer  C. Constant-temperature gas thermometer  D. Constant-pressure gas thermometer

Last Answer : Constant-volume gas thermometer

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : The specific heat at constant volume is  A. the amount of heat required to raise the temperature of unit mass of gas through one degree, at constant pressure  B. the amount of heat required to raise ... to raise the temperature of 1 kg of water through one degree  D. any one of the above

Last Answer : Answer: B

Description : The amount of heat required to raise the temperature of the unit mass of gas through one degree at constant volume, is called  A.specific heat at constant volume  B.specific heat at constant pressure  C.kilo Joule  D.none of these

Last Answer : Answer: A

Description : Molecular volume of any perfect gas at 600 x 103 N/m2 and 27°C will be  (a) 4.17m3/kgmol  (b) 400 m3/kg mol  (c) 0.15 m3/kg mol  (d) 41.7 m3/kg mol  (e) 417m3/kgmol.

Last Answer : Answer : a

Description : Entropy change depends on  (a) heat transfer  (b) mass transfer  (c) change of temperature  (d) thermodynamic state  (e) change of pressure and volume.

Last Answer : Answer : a

Description : Which of the following parameters is constant for a mole for most of the gases at a given temperature and pressure  (a) enthalpy  (b) volume  (c) mass  (d) entropy  (e) specific volume.

Last Answer : Answer : b

Description : Extensive property of a system is one whose value  (a) depends on the mass of the system like volume  (b) does not depend on the mass of the system, like temperature, pressure, etc.  (c) is not ... the state  (d) is dependent on the path followed and not on the state  (e) is always constant.

Last Answer : Answer : a

Description : Intensive property of a system is one whose value  (a) depends on the mass of the system, like volume  (b) does not depend on the mass of the system, like temperature, pressure, etc.  (c) is not ... on the state  (d) is dependent on the path followed and not on the state  (e) remains constant.

Last Answer : Answer : b

Description : A cylinder contains oxygen at a pressure of 10 atm and a temperature of 300 K. The volume of the cylinder is 10 liters. What is the mass of the oxygen in grams? Molecular weight (MW) of oxygen is 32 g/mole?  a. 125.02  b. 130.08  c. 135.05  d. 120.04

Last Answer : 130.08 {(10atm)(10)(32)/(0.0821) (300K)}

Description : Addition of heat at constant pressure to a gas results in  (a) raising its temperature  (b) raising its pressure  (c) raising its volume  (d) raising its temperature and doing external work  (e) doing external work.

Last Answer : Answer : d

Description : According to Avogadro's law, for a given pressure and temperature, each molecule of a gas  (a) occupies volume proportional to its molecular weight  (b) occupies volume proportional to its specific ...  (d) occupies volume inversely proportional to its specific weight  (e) occupies same volume.

Last Answer : Answer : e

Description : The condition of perfect vacuum, i.e., absolute zero pressure can be attained at  (a) a temperature of – 273.16°C  (b) a temperature of 0°C  (c) a temperature of 273 °K  (d) a negative pressure and 0°C temperature  (e) can’t be attained.

Last Answer : Answer : a

Description : For which of the following substances, the internal energy and enthalpy are the functions of temperature only  (a) any gas  (b) saturated steam  (c) water  (d) perfect gas  (e) superheated steam.

Last Answer : Answer : d

Description : The gas constant of a certain gas is the ratio of:  A. Universal gas constant to molar mass  B. Universal gas constant to atomic weight  C. Universal gas constant to atomic number  D. Universal gas constant to number of moles

Last Answer : Universal gas constant to molar mass

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : A law relating the pressure, temperature and volume of an ideal gas  a. Gay-Lussac’s Law  b. Ideal gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Ideal gas Law

Description : If the initial volume of an ideal gas is compressed to one-half its original volume and to twice its original temperature, the pressure:  a. doubles  b. halves  c. quadruples  d. triples

Last Answer : quadruples

Description : What Law states that the pressure of gas is inversely proportional to its volume at constant temperature?  a. Charles’ law  b. Gay-Lussac’s Law  c. Boyle’s Law  d. Dalton’s Law

Last Answer : Boyle’s Law

Description : The volume of a confined gas is held constant, the pressure is directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Joule’s Law  d. Specific Heat

Last Answer : Boyle’s Law

Description : The pressure of the confined gas is held constant, the volume directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Zeroth Law  d. Gas Law

Last Answer : Charle’s Law

Description : “If the temperature o f a fixed quantity of a gas is held constant during a change of state, the volume varies inversely with the absolute pressure.  a. Charle’s Law  b. Boyle’s Law  c. Dalton’s Law  d. Amagat’s Law

Last Answer : Boyle’s Law

Description : The volume of a gas under standard atmospheric pressure & 76 cmHg is 200m³. What is the volume when pressure is 80 cmHg if the temperature is unchanged?  a) 180 in³  b) 170 in³  c) 160 in³  d) 190 in³ Formula: P2V2 = P1V1

Last Answer : 190 in³

Description : A gas having a volume of100 ft³ at 27ºC is expanded to 120 ft³by heated at constant pressure to what temperature has it been heated to have this new volume?  a. 87°C  b. 85°C  c. 76°C  d. 97°C t2= T2–T1

Last Answer : 87°C

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : An ideal gas is maintained at constant temperature. If the pressure on the gas is doubled, the volume is  a. increased fourfold  b. doubled  c. reduced by half  d. decreased by a quarter

Last Answer : reduced by half

Description : The volume of an ideal gas is directly proportional to its  a. pressure  b. Celsius temperature  c. Kelvin temperature  d. Fahrenheit temperature

Last Answer : Kelvin temperature

Description : The gas in a constant gas thermometer cooled to absolute zero would have _________.  a. no volume  b. no pressure  c. zero temperature at all scales  d. none of the above

Last Answer : no pressure

Description : What gas thermometer is based on the principle that at low pressure, the temperature of a gas is proportional to its pressure at constant volume?  A. Constant-pressure gas thermometer  B. Isobaric gas thermometer  C. Isometric gas thermometer  D. Constant-volume gas thermometer

Last Answer : Constant-volume gas thermometer

Description : Properties of substances like pressure, temperature and density, in thermodynamic coordinates are  (a) path functions  (b) point functions  (c) cyclic functions  (d) real functions (e) thermodynamic functions.

Last Answer : Answer : b

Description : The change in physical size of a substance when its temperature changes.  a. intensive property  b. extensive property  c. volume expansion  d. thermal expansion

Last Answer : thermal expansion

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : The state of a thermodynamic system is always defined by its:  a. Absolute temperature  b. process  c. properties  d. temperature and pressure

Last Answer : properties

Description : Steam at 1000 lbf/ft^2 pressure and 300˚R has specific volume of 6.5 ft^3/lbm and a specific enthalpy of 9800 lbf-ft/lbm. Find the internal energy per pound mass of steam.  A.2500 lbf-ft/lbm  B.3300 lbf-ft/lbm  C.5400 lbf-ft/lbm  D.6900 lbf-ft/lbm Formula: h= u+ pV u= h– pV

Last Answer : 3300 lbf-ft/lbm

Description : What remains constant during a steady-flow process?  A. Mass  B. Energy content of the control volume  C. Temperature  D. Mass and energy content of the control volume

Last Answer : Mass and energy content of the control volume

Description : An open system may refer to ______.  A. Control mass  B. Control volume  C. Control energy  D. Control temperature

Last Answer : Control volume

Description : A closed system may refer to ______.  A. Control mass  B. Control volume  C. Control energy  D. Control temperature

Last Answer : Control mass

Description : How are thermodynamic properties classified?  A. Physical and chemical  B. Intensive and extensive  C. Real and imaginary  D. Homogeneous and heterogeneous

Last Answer : Intensive and extensive

Description : Gas turbine cycle consists of  (a) two isothermals and two isentropics  (b) two isentropics and two constant volumes  (c) two isentropics, one constant volume and one constant pressure  (d) two isentropics and two constant pressures  (e) none of the above.

Last Answer : Answer : d

Description : Universal gas constant is defined as equal to product of the molecular weight of the gas and  (a) specific heat at constant pressure  (b) specific heat at constant volume  (c) ratio of two specific heats  (d) gas constant  (e) unity.

Last Answer : Answer : d