What form of energy refers to those a system possesses as a whole with respect to some outside reference frame, such as potential and kinetic energies?  A. Macroscopic form of energy  B. Microscopic form of energy  C. Internal energy  D. External energy

1 Answer

Answer :

Macroscopic form of energy

Related questions

Description : What type of system energy is related to the molecular structure of a system?  A. Macroscopic form of energy  B. Microscopic form of energy  C. Internal energy  D. External energy

Last Answer : Microscopic form of energy

Description : What refers to the portion of the internal energy of a system associated with the kinetic energies of the molecules?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Sensible energy

Description : The sum of energies of all the molecules in a system, energies that appear in several complex forms.  a. External Energy  b. Internal Energy  c. Kinetic Energy  d. None of the above

Last Answer : Internal Energy

Description : _________ is the energy stored within a body or substance by virtue of the activity and configuration of its molecules.  a. Internal Energy  b. External Energy  c. Kinetic Energy  d. Potential Energy

Last Answer : Internal Energy

Description : The sum of all the microscopic form of energy is called _____.  A. Total energy  B. Internal energy  C. System energy  D. Phase energy

Last Answer : Internal energy

Description : The molecules of a gas moving through space with some velocity possesses what kind of energy?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Translational energy

Description : _________ is the grand total of all energies inside a substance.  a. Internal Energy  b. Grand Energy  c. Atomic Energy  d. Elemental Energy

Last Answer : Internal Energy

Description : The energy that stored in a system as a result of its position in the earth’s gravitational field  a. elastic energy  b. kinetic energy  c. potential energy  d. flow energy

Last Answer : potential energy

Description : Which of the following statements is TRUE for an ideal gas, but not for a real gas?  A. PV = nRT  B. An increase in temperature causes an increase in the kinetic energy of the gas  C. The ... same as the volume of the gas as a whole  D. No attractive forces exists between the molecule of a gas

Last Answer : PV = nRT

Description : _________ the very small KE still present in molecules at absolute zero temperature.  a. internal KE  b. Atomic kinetic energy  c. Zero-Point Energy  d. Subliminal Energy

Last Answer : Zero-Point Energy

Description : In the above problem, find the potential energy of the mass with respect to datum. (Formula: P = mgz/k )  a. 4875 j  b. 0.51 j  c. 0.46 j  d. None of the above

Last Answer : 4875 j

Description : What happens to the internal energy of water at reference temperature where enthalpy is zero?  a. Becomes negative  b. Becomes positive  c. Remains constant  d. Cannot be defined

Last Answer : Becomes negative

Description : Heat engine deriving its power from the energy liberated by the explosion of a mixture of some hydrocarbon, in a gaseous or vaporized form.  a. Dual Combustion Engine  b. Internal Combustion Engine  c. External Combustion Engine  d. None of the above

Last Answer : Internal Combustion Engine

Description : The statement that the sum of the kinetic and potential energies of a particle in the earth's gravitational field is constant is known as a.Principle of conservation of mechanical energy b.Law of gravitation c.Newton's law d.Principle of conservation of momentum e.Law of nature

Last Answer : a. Principle of conservation of mechanical energy

Description : The macroscopic approach to the study of thermodynamics does not require a knowledge of the behavior of individual particles is called _____.  A. Dynamic thermodynamics  B. Static thermodynamics  C. Statistical thermodynamics  D. Classical thermodynamics

Last Answer : Classical thermodynamics

Description : Which of the following best describes both Stirling and Ericson engines?  a. Internal combustion engine  b. External combustion engine  c. Diesel cycle  d. Rankine cycle

Last Answer : External combustion engine

Description : An iron sphere of mass 30 kg and an aluminium sphere of mass 10 kg, both having the same diameter are dropped vertically from a cliff. When they are 10 metrs from the ground, they have identical a.Accelerations b.Momenta c.Kinetic energies d.Potential energies e.All of the above

Last Answer : a. Accelerations

Description : A wound watch spring possesses energy in the form of a.Mechanical potential energy b.Kinetic energy c.Spring energy d.Potential energy e.Both potential and kinetic energy

Last Answer : a. Mechanical potential energy

Description : What are the only two forms of energy interactions associated with a closed system?  A. Kinetic energy and heat  B. Heat transfer and work  C. Thermal energy and chemical energy  D. Latent energy and thermal energy

Last Answer : Heat transfer and work

Description : Which law states that the internal energy of a gas is a function of temperature  (a) Charles’ law  (b) Joule’s law  (c) Regnault’s law  (d) Boyle’s law  (e) there is no such law.

Last Answer : Answer : b

Description : The combined mass of car and passengers travelling at 72 km/hr is 1500 kg. Find the kinetic energy of this combined mass. (Formula: K =mv2 / 2k )  a. 300 kJ  b. 200 kJ  c. 500 kJ  d. None of the above

Last Answer : 300 kJ

Description : _________ is a measure of the average kinetic energy per molecule in a substance.  a. movement  b. temperature  c. heat  d. mass

Last Answer : temperature

Description : The electrons which spins about its axis will possess what kind of energy?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Spin energy

Description : The electrons in an atom which rotate about the nucleus possess what kind of energy?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Rotational kinetic energy

Description : The kinetic energy of molecules of a gas becomes zero at absolute zero temperature.  A. Agree  B. Disagree

Last Answer : Answer: A

Description : The pressure exerted by an ideal gas is __________ of the kinetic energy of all the molecules contained in a unit volume of gas.  A.one-half  B.one-third  C.two-third  D.three-fourth

Last Answer : Answer: C

Description : Which of the following items is not a path function  (a) heat  (b) work  (c) kinetic energy  (d) vdp  (e) thermal conductivity.

Last Answer : Answer : e

Description : Kinetic energy of the molecules in terms of absolute temperature (T) is proportional to  (a) T  (b) j  (c) J2  (d) Vr  (e) 1/Vr.

Last Answer : Answer : a

Description : The pressure’of a gas in terms of its mean kinetic energy per unit volume E is equal to  (a) E/3  (b) E/2  (c) 3E/4  (d)2E/3  (e) 5E/4.

Last Answer : Answer : d

Description : According to kinetic theory of gases, the absolute zero temperature is attained when  (a) volume of the gas is zero  (b) pressure of the gas is zero  (c) kinetic energy of the molecules is zero  (d) specific heat of gas is zero  (e) mass is zero.

Last Answer : Answer : c

Description : Temperature of a gas is produced due to  (a) its heating value  (b) kinetic energy of molecules  (c) repulsion of molecules  (d) attraction of molecules  (e) surface tension of molecules.

Last Answer : Answer : b

Description : A convection process in which an external device, such as a fan, is used to produce the fluid flow.  a. Forced Convection  b. External Convection  c. Placid Convection  d. Thermionic Convection

Last Answer : Forced Convection

Description : _________ is a thermodynamic potential that measures the “useful” or process-initiating work obtainable from an isothermal, isobaric thermodynamic system.  a. Du-Pont Potential  b. Gibbs free energy  c. Rabz-Eccles Energy  d. Claussius Energy

Last Answer : Gibbs free energy

Description : What are the assumptions of the kinetic gas theory?  A. Gas molecules do not attract each other  B. The volume of the gas molecules is negligible compared to the volume of the gas  C. The molecules behave like hard spheres  D. All of the above

Last Answer : All of the above

Description : Kinetic theory of gases assumes that the collisions between the molecules are  (a) perfectly elastic  (b) perfectly inelastic  (c) partly elastic  (d) partly inelastic  (e) partly elastic and partly inelastic.

Last Answer : Answer : a

Description : What refers to the amount of heat removed from the cooled space in BTS’s for 1 watt-hour of electricity consumed?  A. Cost efficiency rating  B. Energy efficiency rating  C. Coefficient of performance  D. Cost of performance

Last Answer : Energy efficiency rating

Description : What refers to the transfer of energy between a solid surface and the adjacent fluid that is in motion?  A. Conduction  B. Convection  C. Radiation  D. Electrification

Last Answer : Convection

Description : What refers to the amount of energy absorbed or released during a phase-change process?  A. Molar heat  B. Latent heat  C. Vaporization heat  D. Condensation heat

Last Answer : Latent heat

Description : Entropy is the measure of:  a. The internal energy of a gas  b. The heat capacity of a substance  c. Randomness or disorder  d. The change of enthalpy of a system

Last Answer : Randomness or disorder

Description : Sum of the internal energy of a substance and the product of pressure and volume.  a. Specific Heat  b. Specific Gravity  c. Isolated System  d. Enthalpy

Last Answer : Enthalpy

Description : A 10m^3 vessel initially contains 5 m^3 of liquid water and 5 m^3 of saturated water vapor at 100 kPa. Calculate the internal energy of the system using the steam table.  A. 5 x10^5 kJ  B. 8x10^5 kJ  C. 1 ... 3 kJ/kg ug= 2506kJ/kg formula: Mvap = V vap/vg M liq = Vliq/ vƒ u =uƒM liq + ug M vap

Last Answer : 2 x10^6 kJ

Description : If a system absorbs 500 cal of heat at the same time does 400J of work, find the change in internal energy of the system.  a. 1400 J  b. 1700 J  c. 1900 J  d. 1500 J

Last Answer : 1700 J

Description : What is the internal energy associated with the phase of a system called?  A. Chemical energy  B. Latent energy  C. Phase energy  D. Thermal energy

Last Answer : Latent energy

Description : First law of thermodynamics  (a) enables to determine change in internal energy of the system  (b) does not help to predict whether the system will or not undergo a change  (c) does not enable ... entropy  (d) provides relationship between heat, work and internal energy  (e) all of the above.

Last Answer : Answer : e

Description : Change in internal energy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : c

Description : Change in enthalpy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : a

Description : According to first law of thermodynamics  (a) work done by a system is equal to heat transferred by the system  (b) total internal energy of a system during a process remains constant  ( ... , enthalpy and entropy during a process remain constant  (d) total energy of a system remains constant

Last Answer : Answer : d

Description : First law of thermodynamics furnishes the relationship between  (a) heat and work  (b) heat, work and properties of the system  (c) various properties of the system  (d) various thermodynamic processes  (e) heat and internal energy.

Last Answer : (b) heat, work and properties of the system

Description : Which of the following is the property of a system  (a) pressure and temperature  (b) internal energy  (c) volume and density  (d) enthalpy and entropy  (e) all of the above.

Last Answer : Answer : e