Heat and work are
 (a) point functions
 (b) system properties
 (c) path functions
 (d) intensive properties
 (e) extensive properties.

1 Answer

Answer :

Answer : c

Related questions

Description : The thermodynamic properties that are dependent on the size or extent of the system is called _____.  A. Extensive property  B. Intensive property  C. Open property  D. Closed property

Last Answer : Extensive property

Description : The thermodynamic properties that are independent on the size of the system is called _____.  A. Extensive property  B. Intensive property  C. Open property  D. Closed property

Last Answer : Intensive property

Description : What refers to the thermodynamic properties which are independent on the amount of the substance present?  a. Extensive property  b. Intensive properties  c. Reversible properties  d. Irreversible properties

Last Answer : Intensive properties

Description : What refers to the thermodynamic properties which are dependent on the amount of the substance present?  a. Extensive property  b. Intensive properties  c. Reversible properties  d. Irreversible properties

Last Answer : Extensive property

Description : How are thermodynamic properties classified?  A. Physical and chemical  B. Intensive and extensive  C. Real and imaginary  D. Homogeneous and heterogeneous

Last Answer : Intensive and extensive

Description : Properties of substances like pressure, temperature and density, in thermodynamic coordinates are  (a) path functions  (b) point functions  (c) cyclic functions  (d) real functions (e) thermodynamic functions.

Last Answer : Answer : b

Description : The change in physical size of a substance when its temperature changes.  a. intensive property  b. extensive property  c. volume expansion  d. thermal expansion

Last Answer : thermal expansion

Description : Extensive property of a system is one whose value  (a) depends on the mass of the system like volume  (b) does not depend on the mass of the system, like temperature, pressure, etc.  (c) is not ... the state  (d) is dependent on the path followed and not on the state  (e) is always constant.

Last Answer : Answer : a

Description : Intensive property of a system is one whose value  (a) depends on the mass of the system, like volume  (b) does not depend on the mass of the system, like temperature, pressure, etc.  (c) is not ... on the state  (d) is dependent on the path followed and not on the state  (e) remains constant.

Last Answer : Answer : b

Description : dW and dq are not the exact differential, because q and W are (A) State functions (B) Path functions (C) Intensive properties (D) Extensive properties

Last Answer : (B) Path functions

Description : dW and dq are not the exact differential, because q and W are (A) State functions (B) Path functions (C) Intensive properties (D) Extensive properties

Last Answer : (B) Path functions

Description : Intensive properties of a system are called _________.  a. Bulk Properties  b. Innate Properties  c. Natural Properties  d. Inside Properties

Last Answer : Bulk Properties

Description : “The state of a simple compressible system is completely specified by two independent, intensive properties”. This is known as ______.  A. Equilibrium postulate  B. State postulate  C. Environment postulate  D. Compressible system postulate

Last Answer : State postulate

Description : Extensive properties per unit mass are called _____.  A. Specific properties  B. Relative properties  C. Unit properties  D. Phase properties

Last Answer : Specific properties

Description : Which of the following is not the intensive property  (a) pressure  (b) temperature  (c) density  (d) heat  (e) specific volume.

Last Answer : Answer : d

Description : First law of thermodynamics furnishes the relationship between  (a) heat and work  (b) heat, work and properties of the system  (c) various properties of the system  (d) various thermodynamic processes  (e) heat and internal energy.

Last Answer : (b) heat, work and properties of the system

Description : Which of the following items is not a path function  (a) heat  (b) work  (c) kinetic energy  (d) vdp  (e) thermal conductivity.

Last Answer : Answer : e

Description : The thermodynamic property of a system is said to be an intensive property whose value for the entire system __________ the sum of their value for the individual parts of the system.  A. is equal to  B. is not equal to

Last Answer : Answer: B

Description : Which is NOT an extensive property of thermodynamics?  A. Density  B. Mass  C. Volume  D. Energy

Last Answer : Density

Description : Which is NOT an intensive property of thermodynamics?  A. Temperature  B. Mass  C. Pressure  D. Density

Last Answer : Mass

Description : The flow through an open system is _________ if all properties at each point within the system remain constant with respect to time.  a. streamline flow  b. steady flow  c. constant flow  d. algebraic flow

Last Answer : steady flow

Description : A _________ is a quantity whose value depends on the path followed during a particular change in state.  a. path function  b. point function  c. process  d. cycle

Last Answer : path function

Description : A _________ is a quantity whose value at any state is independent of the path or process used to reach that state.  a. cycle  b. path function  c. point function  d. process

Last Answer : point function

Description : Classify the following properties as extensive and intensive properties: Molar heat capacity, temperature, enthalpy and volume.

Last Answer : Ans. Extensive properties : Enthalpy and volume. Intensive properties: Molar heat capacity, temperature.

Description : What refers to the series of states through which a system passes during the process?  a. path  b. quasi- static steps  c. reversibility moves  d. irreversibility moves

Last Answer : path

Description : What is a process in which the system remains infinitesimally closed to an equilibrium state at all times?  A. Path equilibrium process  B. Cycle equilibrium process  C. Phase equilibrium process  D. Quasi-state or quasiequilibrium process

Last Answer : Quasi-state or quasi- equilibrium process

Description : What refers to the series of state through which a system passes during a process?  A. Path  B. Phase  C. Cycle  D. Direction

Last Answer : Path

Description : What refers to any change that a system undergoes from one equilibrium state to another equilibrium state?  A. Process  B. Path  C. Phase  D. Cycle

Last Answer : Process

Description : The state of a thermodynamic system is always defined by its:  a. Absolute temperature  b. process  c. properties  d. temperature and pressure

Last Answer : properties

Description : If any one or more properties of a system change, the system is said to have undergone a _______.  a. Cycle  b. System  c. Process  d. None of the above

Last Answer : Process

Description : _________ is the average distance a molecule moves before colliding with another molecule.  a. mean free path  b. path allowance  c. compacting factor  d. molecular space

Last Answer : mean free path

Description : What is a process with identical end states called?  A. Cycle  B. Path  C. Phase  D. Either path or phase

Last Answer : Cycle

Description : Carnot cycle efficiency depends upon  (a) properties of the medium/substance used  (b) condition of engine  (c) working condition  (d) temperature range of operation  (e) effectiveness of insulating material around the engine.

Last Answer : Answer : d

Description : Measurement of temperature is based on  (a) thermodynamic properties  (b) zeroth law of thermodynamics  (c) first law of thermodynamics  (d) second law of thermodynamics  (e) joule’s law.

Last Answer : Answer : b

Description : In an isothermal process, the internal energy of gas molecules  (a) increases  (b) decreases  (c) remains constant  (d) may increase/decrease depending on the properties of gas  (e) shows unpredictable behaviour.

Last Answer : Answer : c

Description : Which of the following variables controls the physical properties of a perfect gas  (a) pressure  (b) temperature  (c) volume  (d) all of the above  (e) atomic mass.

Last Answer : Answer : d

Description : Let a closed system execute a state change for which the heat is Q = 100 J and work is W = -25 J. Find E. ∆ (Formula: E = Q- W) ∆  a. 125 J  b. 123 J  c. 126 J  d. None of the above

Last Answer : 125 J

Description : If a system after undergoing a series of processes, returns to the initial state then  (a) process is thermodynamically in equilibrium  (b) process is executed in closed system cycle  (c) its entropy will ... sum of heat and work transfer will be zero  (e) no work will be done by the system.

Last Answer : Answer : d

Description : First law of thermodynamics  (a) enables to determine change in internal energy of the system  (b) does not help to predict whether the system will or not undergo a change  (c) does not enable ... entropy  (d) provides relationship between heat, work and internal energy  (e) all of the above.

Last Answer : Answer : e

Description : For which of the following substances, the internal energy and enthalpy are the functions of temperature only  (a) any gas  (b) saturated steam  (c) water  (d) perfect gas  (e) superheated steam.

Last Answer : Answer : d

Description : How many independent properties are required to completely fix the equilibrium state of a pure gaseous compound?  a. 4  b. 3  c. 2  d. 1

Last Answer : 2

Description : How many independent properties are required to completely fix the equilibrium state of a pure gaseous compound?  A. 4  B. 3  C. 2  D. 1

Last Answer : 2

Description : The behaviour of a perfect gas, undergoing any change in the variables which control physical properties, is governed by  A. Boyle’s law  B. Charles’ law  C. Gay-Lussac law  D. all of these

Last Answer : Answer: D

Description : The heat absorbed by a unit mass of a material at its holding point in order to convert the material into a gas at the same temperature.  a. Latent Heat of Sublimation  b. Latent Heat of Vaporization  c. Latent Heat of Fusion  d. Latent Heat Of Condensation

Last Answer : Latent Heat of Vaporization

Description : Is a steady flow process at total constant pressure through a control volume for which there is no heat?  a. Adiabatic Saturation Process  b. Dew point  c. Adiabatic Ratio  d. None of the above

Last Answer : Adiabatic Saturation Process

Description : What is the amount of heat needed to turn 1kg of the substance at its boiling point from the liquid to the gaseous state?  A. Heat of fusion  B. Heat of vaporation  C. Heat of condensation  D. Heat of fission

Last Answer : Heat of vaporation

Description : What is the amount of heat needed to turn 1 kg of the substance at its melting point from the solid to liquid state?  A. Heat of fusion  B. Heat of vaporation  C. Heat of condensation  D. Heat of fission

Last Answer : Heat of fusion

Description : Is a thermodynamic system that operates continuously with only energy (heat and work) crossing its boundaries?  a. Heat Engine  b. Heat Reservoir  c. Heat Source  d. Heat Sink

Last Answer : Heat Engine

Description : Is the energy in transit (on the move) from the one body or system to another solely because of a temperature between the bodies or systems.  a. Work  b. Heat  c. Energy  d. None of the above

Last Answer : Heat

Description : A system having a rigid boundary that energy, work and mass does not cross its boundaries  a. Specific Heat  b. Specific Gravity  c. Isolated System  d. Enthalpy

Last Answer : Isolated System