Which of the following items is not a path function
 (a) heat
 (b) work
 (c) kinetic energy
 (d) vdp
 (e) thermal conductivity.

1 Answer

Answer :

Answer : e

Related questions

Description : What are the only two forms of energy interactions associated with a closed system?  A. Kinetic energy and heat  B. Heat transfer and work  C. Thermal energy and chemical energy  D. Latent energy and thermal energy

Last Answer : Heat transfer and work

Description : What is a measure of the ability of a material to conduct heat?  A. Specific heat capacity  B. Coefficient of thermal expansion  C. Coefficient of thermal conductivity  D. Thermal conductivity

Last Answer : Thermal conductivity

Description : Which of the following is the formula for thermal resistance?  A. Thickness of material/ thermal conductivity of material  B. 2(thickness of material)/thermal conductivity of material  C. ... / 2(thermal conductivity of material)  D. Thickness of material x thermal conductivity of material

Last Answer : Thickness of material/ thermal conductivity of material

Description : What refers to the rate of thermal radiation emitter per unit area of a body?  A. Thermal conductivity  B. Absorptivity  C. Emissivity  D. Emissive power

Last Answer : Emissive power

Description : According to kinetic theory of gases, the absolute zero temperature is attained when  (a) volume of the gas is zero  (b) pressure of the gas is zero  (c) kinetic energy of the molecules is zero  (d) specific heat of gas is zero  (e) mass is zero.

Last Answer : Answer : c

Description : _________ is a measure of the average kinetic energy per molecule in a substance.  a. movement  b. temperature  c. heat  d. mass

Last Answer : temperature

Description : Which of the following best describes heat?  a. The capacity to do work  b. Forces times distances  c. Sum of thermal and chemical energy  d. An energy transfer due to temperature difference

Last Answer : An energy transfer due to temperature difference

Description : Heat and work are  (a) point functions  (b) system properties  (c) path functions  (d) intensive properties  (e) extensive properties.

Last Answer : Answer : c

Description : Which of the following represents the perpetual motion of the first kind  (a) engine with 100% thermal efficiency  (b) a fully reversible engine  (c) transfer of heat energy from low ... its own energy  (e) production of energy by temperature differential in sea water at different levels.

Last Answer : Answer : d

Description : Total heat of a substance is also known as  (a) internal energy  (b) entropy  (c) thermal capacity  (d) enthalpy  (e) thermal conductance.

Last Answer : Answer : d

Description : Zeroth law of thermodynamics  (a) deals with conversion of mass and energy  (b) deals with reversibility and irreversibility of process  (c) states that if two systems are both in equilibrium with a ... in thermal equilibrium with each other  (d) deals with heat engines  (e) does not exist.

Last Answer : Answer : c

Description : Calorie is a measure of  (a) specific heat  (b) quantity of heat  (c) thermal capacity  (d)entropy  (e) work.

Last Answer : Answer : b

Description : What is the highest efficiency of heat engine operating between the two thermal energy reservoirs at temperature limits?  A. Ericson efficiency  B. Otto efficiency  C. Carnot efficiency  D. Stirling efficiency

Last Answer : Carnot efficiency

Description : Kinetic energy of the molecules in terms of absolute temperature (T) is proportional to  (a) T  (b) j  (c) J2  (d) Vr  (e) 1/Vr.

Last Answer : Answer : a

Description : The pressure’of a gas in terms of its mean kinetic energy per unit volume E is equal to  (a) E/3  (b) E/2  (c) 3E/4  (d)2E/3  (e) 5E/4.

Last Answer : Answer : d

Description : Temperature of a gas is produced due to  (a) its heating value  (b) kinetic energy of molecules  (c) repulsion of molecules  (d) attraction of molecules  (e) surface tension of molecules.

Last Answer : Answer : b

Description : _________ is the energy stored within a body or substance by virtue of the activity and configuration of its molecules.  a. Internal Energy  b. External Energy  c. Kinetic Energy  d. Potential Energy

Last Answer : Internal Energy

Description : The sum of energies of all the molecules in a system, energies that appear in several complex forms.  a. External Energy  b. Internal Energy  c. Kinetic Energy  d. None of the above

Last Answer : Internal Energy

Description : The energy that stored in a system as a result of its position in the earth’s gravitational field  a. elastic energy  b. kinetic energy  c. potential energy  d. flow energy

Last Answer : potential energy

Description : The combined mass of car and passengers travelling at 72 km/hr is 1500 kg. Find the kinetic energy of this combined mass. (Formula: K =mv2 / 2k )  a. 300 kJ  b. 200 kJ  c. 500 kJ  d. None of the above

Last Answer : 300 kJ

Description : _________ the very small KE still present in molecules at absolute zero temperature.  a. internal KE  b. Atomic kinetic energy  c. Zero-Point Energy  d. Subliminal Energy

Last Answer : Zero-Point Energy

Description : Which of the following statements is TRUE for an ideal gas, but not for a real gas?  A. PV = nRT  B. An increase in temperature causes an increase in the kinetic energy of the gas  C. The ... same as the volume of the gas as a whole  D. No attractive forces exists between the molecule of a gas

Last Answer : PV = nRT

Description : What refers to the portion of the internal energy of a system associated with the kinetic energies of the molecules?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Sensible energy

Description : The electrons which spins about its axis will possess what kind of energy?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Spin energy

Description : The electrons in an atom which rotate about the nucleus possess what kind of energy?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Rotational kinetic energy

Description : The molecules of a gas moving through space with some velocity possesses what kind of energy?  A. Translational energy  B. Spin energy  C. Rotational kinetic energy  D. Sensible energy

Last Answer : Translational energy

Description : What form of energy refers to those a system possesses as a whole with respect to some outside reference frame, such as potential and kinetic energies?  A. Macroscopic form of energy  B. Microscopic form of energy  C. Internal energy  D. External energy

Last Answer : Macroscopic form of energy

Description : The kinetic energy of molecules of a gas becomes zero at absolute zero temperature.  A. Agree  B. Disagree

Last Answer : Answer: A

Description : The pressure exerted by an ideal gas is __________ of the kinetic energy of all the molecules contained in a unit volume of gas.  A.one-half  B.one-third  C.two-third  D.three-fourth

Last Answer : Answer: C

Description : Which of the following thermodynamic devices operates the reverse of the heat engine?  a. Thermal pump  b. Thermal evaporator  c. Thermal condenser  d. Thermal equilibrant

Last Answer : Thermal pump

Description : What states that thermal efficiencies of all reversible heat engines operating between the same two reservoirs are the same and that no heat engine is more efficient than a reversible one operating between the ... A. Ericson principle  B. Carnot principle  C. Otto principle  D. Stirling principle

Last Answer : Carnot principle

Description : Thermal efficiency is the ratio of:  A. Network input to total heat input  B. Network output to total heat output  C. Network output to total heat input  D. Network input to total heat output

Last Answer : Network output to total heat input

Description : A _________ is a quantity whose value depends on the path followed during a particular change in state.  a. path function  b. point function  c. process  d. cycle

Last Answer : path function

Description : A _________ is a quantity whose value at any state is independent of the path or process used to reach that state.  a. cycle  b. path function  c. point function  d. process

Last Answer : point function

Description : Kinetic theory of gases assumes that the collisions between the molecules are  (a) perfectly elastic  (b) perfectly inelastic  (c) partly elastic  (d) partly inelastic  (e) partly elastic and partly inelastic.

Last Answer : Answer : a

Description : What are the assumptions of the kinetic gas theory?  A. Gas molecules do not attract each other  B. The volume of the gas molecules is negligible compared to the volume of the gas  C. The molecules behave like hard spheres  D. All of the above

Last Answer : All of the above

Description : What is defined as the ratio of the net electrical power output to the rate of fuel energy input?  A. Combustion efficiency  B. Thermal efficiency  C. Overall efficiency  D. Furnace efficiency

Last Answer : Overall efficiency

Description : What is the internal energy associated with the phase of a system called?  A. Chemical energy  B. Latent energy  C. Phase energy  D. Thermal energy

Last Answer : Latent energy

Description : Properties of substances like pressure, temperature and density, in thermodynamic coordinates are  (a) path functions  (b) point functions  (c) cyclic functions  (d) real functions (e) thermodynamic functions.

Last Answer : Answer : b

Description : Extensive property of a system is one whose value  (a) depends on the mass of the system like volume  (b) does not depend on the mass of the system, like temperature, pressure, etc.  (c) is not ... the state  (d) is dependent on the path followed and not on the state  (e) is always constant.

Last Answer : Answer : a

Description : Intensive property of a system is one whose value  (a) depends on the mass of the system, like volume  (b) does not depend on the mass of the system, like temperature, pressure, etc.  (c) is not ... on the state  (d) is dependent on the path followed and not on the state  (e) remains constant.

Last Answer : Answer : b

Description : During throttling process  (a) heat exchange does not take place  (b) no work is done by expanding steam  (c) there is no change of internal energy of steam  (d) all of the above  (e) entropy decreases.

Last Answer : Answer : d

Description : According to first law of thermodynamics  (a) mass and energy are mutually convertible  (b) Carnot engine is most efficient  (c) heat and work are mutually convertible  (d) mass and light are mutually convertible  (e) heat flows from hot substance to cold substance.

Last Answer : Answer : c

Description : First law of thermodynamics  (a) enables to determine change in internal energy of the system  (b) does not help to predict whether the system will or not undergo a change  (c) does not enable ... entropy  (d) provides relationship between heat, work and internal energy  (e) all of the above.

Last Answer : Answer : e

Description : First law of thermodynamics furnishes the relationship between  (a) heat and work  (b) heat, work and properties of the system  (c) various properties of the system  (d) various thermodynamic processes  (e) heat and internal energy.

Last Answer : (b) heat, work and properties of the system

Description : A gas is compressed in a cylinder by a movable piston to a volume onehalf its original volume. During the process 300 kJ heat left the gas and internal energy remained same. The work done on gas in Nm will be  (a) 300 Nm  (b) 300,000 Nm  (c) 30 Nm  (d) 3000 Nm  (e) 30,000 Nm.

Last Answer : Answer : b

Description : A system is in ______ equilibrium of its chemical composition does not change with time, i.e., no chemical reaction occurs.  A. Chemical  B. Thermal  C. Mechanical  D. Phase

Last Answer : Chemical

Description : Thermal power plant works on  (a) Carnot cycle  (b) Joule cycle  (d) Rankine cycle  (d) Otto cycle  (e) Brayton cycle.

Last Answer : Answer : c

Description : An adiabatic wall is one which  (a) prevents thermal interaction  (b) permits thermal interaction  (c) encourages thermal interaction  (d) discourages thermal interaction  (e) dos not exist.

Last Answer : Answer : a

Description : A diathermic wall is one which  (a) prevents thermal interaction  (b) permits thermal interaction  (c) encourages thermal interaction  (d) discourages thermal interaction  (e) does not exist.

Last Answer : Answer : b