What is a body that emits a constant emissivity regardless of the wavelength?
 A. Gray body
 B. Black body
 C. Real body
 D. White body

1 Answer

Answer :

Gray body

Related questions

Description : What is the emissivity of a black body?  A. 0  B. 1  C. 0.5  D. 0.25

Last Answer : 1

Description : What refers to the rate of thermal radiation emitter per unit area of a body?  A. Thermal conductivity  B. Absorptivity  C. Emissivity  D. Emissive power

Last Answer : Emissive power

Description : What is used for predicting the behavior of non-ideal gases?  a. Compressibility factor  b. Expansivity factor  c. Emissivity factor  d. Van-d-whal’s factor

Last Answer : Compressibility factor

Description : Which is NOT a characteristic of emissivity?  A. It is high with most nonmetals  B. It is directly proportional to temperature  C. It is independent with the surface condition of the material  D. It is low with highly polished metals

Last Answer : It is independent with the surface condition of the material

Description : While swimming at depth of120m in a fresh water lake, A fish emits an air bubbles of volume 2.0mm³ atmospheric pressure is 100kPa. What is the pressure of the bubble?  a) 217.7 kPa  b) 317.7 kPa  c) 417.7 kPa  d) 517.7 kPa Formula: P= δh

Last Answer : 217.7 kPa

Description : While swimming a depth of 13m in a fresh water lake a fish emits an air bubble of volume 2 mm² atmospheric pressure is 100kpa what is the original pressure of the bubble.  a. 217.17 kpa  b. 119 kpa  c. 326.15 kpa  d. 210 kap Pabs = Pg + Patm

Last Answer : 217.17 kpa

Description : Regardless of the process, the change in enthalpy firm moles of ideal gas is  a. Heat  b. Enthalpy  c. Entropy  d. Density

Last Answer : Heat

Description : It is a process during which the pressure remains constant  a. Adiabatic  b. Isentropic  c. Isobaric  d. Isotropic

Last Answer : Isobaric

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : An ideal gas is compressed in a cylinder so well insulated that there is essentially no heat transfer. The temperature of gas  a. Remains constant  b. increases  c. decreases  d. is basically zero

Last Answer : increases

Description : As temperature goes to “0”, the entropy approaches a constant  a. Zeroth Law of Thermodynamics  b. First Law of Thermodynamics  c. Second Law of Thermodynamics  d. Third Law of Thermodynamics

Last Answer : Third Law of Thermodynamics

Description : Which of the following occurs in a reversible polytrophic process?  a. Enthalpy remains constant  b. Internal energy does not change  c. Some heat transfer occurs  d. Entropy remains constant

Last Answer : Some heat transfer occurs

Description : What happens to the internal energy of water at reference temperature where enthalpy is zero?  a. Becomes negative  b. Becomes positive  c. Remains constant  d. Cannot be defined

Last Answer : Becomes negative

Description : What Law states that the pressure of gas is inversely proportional to its volume at constant temperature?  a. Charles’ law  b. Gay-Lussac’s Law  c. Boyle’s Law  d. Dalton’s Law

Last Answer : Boyle’s Law

Description : Is a steady flow process at total constant pressure through a control volume for which there is no heat?  a. Adiabatic Saturation Process  b. Dew point  c. Adiabatic Ratio  d. None of the above

Last Answer : Adiabatic Saturation Process

Description : The volume of a confined gas is held constant, the pressure is directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Joule’s Law  d. Specific Heat

Last Answer : Boyle’s Law

Description : The pressure of the confined gas is held constant, the volume directly proportional to the absolute temperature.  a. Charle’s Law  b. Boyle’s Law  c. Zeroth Law  d. Gas Law

Last Answer : Charle’s Law

Description : The gas constant is equal to  a. Cp – Cv  b. Cp + Cv  c. Cp – Cv + k  d. None of the above

Last Answer : Cp – Cv

Description : Gas being heated at constant volume is undergoing the process of.  a. isometric  b. specific heat  c. enthalpy  d. isothermal

Last Answer : isometric

Description : _____ is that property of a substance which remains constant if no heat enters or leaves the substance, while it does work or alters its volume, but which increases or diminishes should a small amount of heat enter or leave.  a. Entrophy  b. Enthalpy  c. Specific Heat  d. None of the above

Last Answer : Entrophy

Description : Heat cannot be created, nor destroyed, but it can be changed from one form to another. The energy in the universe remains constant.  a. 1st Law of Energy Conservation  b. 2nd Law of Energy Conservation  c. 3rd Law of Energy Conservation  d. None of the above

Last Answer : 1st Law of Energy Conservation

Description : “If the temperature o f a fixed quantity of a gas is held constant during a change of state, the volume varies inversely with the absolute pressure.  a. Charle’s Law  b. Boyle’s Law  c. Dalton’s Law  d. Amagat’s Law

Last Answer : Boyle’s Law

Description : A certain gas, with cp = 0.529Btu/ lb. °Rand R = 96.2ft.lb/lb. °R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5psia. Compute for T2.  a.1520°R  b. 1620°R  c. 1720°R  d. 1820°R formula: T2= T1V2/V1

Last Answer : 1620°R

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : Ten cu. ft of air at 300psia and 400°F is cooled to 140°F at constant volume. What is the transferred heat?  a.-120Btu  b. -220Btu  c.-320Btu  d. -420Btu formula: Q= mcv(T2-T1)

Last Answer : -420Btu

Description : A gas having a volume of100 ft³ at 27ºC is expanded to 120 ft³by heated at constant pressure to what temperature has it been heated to have this new volume?  a. 87°C  b. 85°C  c. 76°C  d. 97°C t2= T2–T1

Last Answer : 87°C

Description : A certain gas with cp = 0.529Btu/lb°R and R = 96.2ft/lbºR expands from 5 ft and 80ºF to 15 ft while the pressure remains constant at 15.5 psia.  a. T2=1.620ºR, ∫H = 122.83 Btu  b. T2 = 2°R, ∫H = 122.83 Btu  c. ... , ∫H = 122.83 Btu  d. T2 = 1°R, ∫H = 122.83 Btu T2= V2(t2)/V1 and ∫H = mcp (T2-T1)

Last Answer : T2=1.620ºR, ∫H = 122.83 Btu

Description : The volume of the gas held at constant pressure increases 4 cm² at 0°C to 5cm². What is the final pressure?  a. 68.65ºC  b. 68.25ºC  c. 70.01°C  d. 79.1ºC t2= T2–T1

Last Answer : 981 N

Description : An ideal gas at 45psig and 80ºF is heated in the close container to 130ºF. What is the final pressure?  a. 65.10 psi  b. 65.11 psi  c. 65.23 psi  d. 61.16 psi P1V1/T1= P2V2/T2;V = Constant

Last Answer : 65.23 psi

Description : A certain gas, with cp = 0.529Btu/lb.°R and R = 96.2 ft.lb/lb.°R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5 psia. Compute for T2. (Formula: T2= T1V2/V1)  a. 460°R  b. 270°R  c. 1620 °R  d. None of the above

Last Answer : 1620 °R

Description : There are 1.36 kg of gas, for which R = 377 J/kg.k and k = 1.25, that undergo a nonflow constant volume process from p1 = 551.6 kPa and t1 = 60°C to p2 = 1655 kPa. During the process the gas is internally stirred and ... (Formula: T2= T1p2/ p1)  a. 999 K  b. 888 K  c. 456 K  d. One of the above

Last Answer : 999 K

Description : Ten cu ft. of air at 300 psia 400°F is cooled to 140°F at constant volume. What is the final pressure? (formula: p2 = p1T2/T1)  a. 0  b. 209 psia  c. - 420 psia  d. None of the above

Last Answer : 209 psia

Description : Gas is enclosed in a cylinder with a weighted piston as the stop boundary. The gas is heated and expands from a volume of 0.04 m^3 to 0.10 m^3 at a constant pressure of 200kPa.Calculate the work done by the system.  A. 8 kJ  B. 10 kJ  C.12 kJ  D.14 kJ Formula: W = p(V2-V1)

Last Answer : 12 kJ

Description : Twenty grams of oxygen gas are compressed at a constant temperature of 30 ˚C to 5%of their original volume. What work is done on the system.  A.824 cal  B.924 cal  C.944 cal  D.1124 cal Formula: W = -mRTln (V2/V1) Where R = (1.98 cal/gmole·K) (32 g/gmole)

Last Answer : 1124 cal

Description : What is the equation for the work done by a constant temperature system?  A. W = mRTln(V2-V1)  B. W = mR( T2-T1 ) ln( V2/V1)  C. W = mRTln (V2/V1)  D. W = RT ln (V2/V1) Formula : W=∫ pdV lim1,2 ∫ = mRT / V

Last Answer : W = mRTln (V2/V1)

Description : What is the resulting pressure when one pound of air at 15 psia and 200 ˚F is heated at constant volume to 800 ˚F?  A.15 psia  B. 28.6 psia  C. 36.4 psia.  D. 52.1 psia Formula : T1/p1 = T2/p2 p2= p1T2 / T1

Last Answer : 28.6 psia

Description : From the steam table, determine the average constant pressure specific heat (c) of steam at 10 kPa and45.8 ˚C  A.1.79 kJ/ kg-˚C  B.10.28 kJ/ kg-˚C  C.30.57 kJ/ kg-˚C  D. 100.1 kJ/ kg-˚C Formula: h = c T ∆ ∆ From the steam table At 47.7 ˚C h= 2588.1 kJ/ kg At 43.8 ˚C h= 2581.1 kJ/ kg

Last Answer : 1.79 kJ/ kg-˚C

Description : The compressibility factor, x, is used for predicting the behavior of nonideal gases. How is the compressibility ty factor defined relative to an ideal gas? (subscript c refers to critical value)  A. ... compressibility factor, x, is an dimensionless constant given by pV=zRT. Therefore z = pV / RT

Last Answer : z = pV/ RT

Description : The most efficient cycle that can operate between two constant temperature reservoir is the _________.  a. Otto Cycle  b. Lazare Cycle  c. Isothermal Cycle  d. Carnot Cycle

Last Answer : Carnot Cycle

Description : The flow through an open system is _________ if all properties at each point within the system remain constant with respect to time.  a. streamline flow  b. steady flow  c. constant flow  d. algebraic flow

Last Answer : steady flow

Description : A gas is enclosed in a cylinder with a weighted piston as the top boundary. The gas is heated and expands from a volume of 0.04 m3 to 0.10 m3 at a constant pressure of 200 kPa. Find the work done on the system.  a. 5 kJ  b. 15 kJ  c. 10 kJ  d. 12 kJ

Last Answer : 12 kJ

Description : _________ is the temperature to which the air must be cooled, at constant pressure, to produce saturation.  a. relative humidity  b. triple point temperature  c. dew point  d. critical point

Last Answer : dew point

Description : An ideal gas is maintained at constant temperature. If the pressure on the gas is doubled, the volume is  a. increased fourfold  b. doubled  c. reduced by half  d. decreased by a quarter

Last Answer : reduced by half

Description : As we heat a gas at constant pressure, its volume  a. increases  b. decreases  c. stays the same  d. none of the above

Last Answer : increases

Description : On a day when the partial pressure of water vapor remains constant, what happens as the temperature rises?  a. the relative humidity increases  b. the relative humidity decreases  c. the relative humidity remains constant  d. the air would eventually become saturated

Last Answer : the relative humidity decreases

Description : The gas in a constant gas thermometer cooled to absolute zero would have _________.  a. no volume  b. no pressure  c. zero temperature at all scales  d. none of the above

Last Answer : no pressure

Description : The volume of a given amount of water _________ as the temperature decreases from 4˚C to 0˚C.  a. decreases  b. increases  c. remains constant  d. none of the above

Last Answer : increases

Description : An ideal gas whose specific heats are constant is called _____.  A. Perfect gas  B. Natural gas  C. Artificial gas  D. Refined gas

Last Answer : Perfect gas

Description : “At constant pressure, the volume of a gas is inversely proportional to the pressure”. This is known as ______.  A. Boyle’s Law  B. Charles’s Law  C. Gay-Lussac Law  D. Ideal gas law

Last Answer : Boyle’s Law

Description : A process during which entropy remains constant is called ______ process  A. Isometric  B. Isochoric  C. Isobaric  D. Isentropic

Last Answer : Isentropic