An ideal gas at 45psig and 80ºF is
heated in the close container to 130ºF.
What is the final pressure?
 a. 65.10 psi
 b. 65.11 psi
 c. 65.23 psi
 d. 61.16 psi
P1V1/T1= P2V2/T2;V = Constant

1 Answer

Answer :

65.23 psi

Related questions

Description : Assuming compression is according to the Law PV = C, Calculate the initial volume of the gas at a pressure of 2 bars w/c will occupy a volume of 6m³ when it is compressed to a pressure of 42 Bars.  a) 130m³  b) 136m³  c) 120m³  d) 126m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 126m³

Description : The pressure gauge on a 2000 m³ tank of oxygen gas reads 600 kPa. How much volumes will the oxygen occupied at pressure of the outside air 100 kPa?  a) 14026.5 m³  b) 15026.5 m³  c) 13026.5 m³  d) 16026.5 m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 14026.5 m³

Description : A certain gas with cp = 0.529Btu/lb°R and R = 96.2ft/lbºR expands from 5 ft and 80ºF to 15 ft while the pressure remains constant at 15.5 psia.  a. T2=1.620ºR, ∫H = 122.83 Btu  b. T2 = 2°R, ∫H = 122.83 Btu  c. ... , ∫H = 122.83 Btu  d. T2 = 1°R, ∫H = 122.83 Btu T2= V2(t2)/V1 and ∫H = mcp (T2-T1)

Last Answer : T2=1.620ºR, ∫H = 122.83 Btu

Description : p1V1= p2V2  a. Charle's Law  b. Boyle's Law  c. Ideal Gas Law  d. Joule's Law

Last Answer : Boyle's Law

Description : A gas having a volume of100 ft³ at 27ºC is expanded to 120 ft³by heated at constant pressure to what temperature has it been heated to have this new volume?  a. 87°C  b. 85°C  c. 76°C  d. 97°C t2= T2–T1

Last Answer : 87°C

Description : The volume of the gas held at constant pressure increases 4 cm² at 0°C to 5cm². What is the final pressure?  a. 68.65ºC  b. 68.25ºC  c. 70.01°C  d. 79.1ºC t2= T2–T1

Last Answer : 981 N

Description : The volume of a gas under standard atmospheric pressure & 76 cmHg is 200m³. What is the volume when pressure is 80 cmHg if the temperature is unchanged?  a) 180 in³  b) 170 in³  c) 160 in³  d) 190 in³ Formula: P2V2 = P1V1

Last Answer : 190 in³

Description : What is the resulting pressure when one pound of air at 15 psia and 200 ˚F is heated at constant volume to 800 ˚F?  A.15 psia  B. 28.6 psia  C. 36.4 psia.  D. 52.1 psia Formula : T1/p1 = T2/p2 p2= p1T2 / T1

Last Answer : 28.6 psia

Description : Which of the following is the Ideal gas law (equation)?  A. V/T = K  B. V= k*(1/P)  C. P1/T1 = P2/T2  D. PV = nRT

Last Answer : PV = nRT

Description : A 1-kg steam-water mixture at 1.0 MPa is contained in an inflexible tank. Heat is added until the pressure rises to 3.5 MPa and the temperature to 400°. Determine the heat added.  a) 1378.7 kJ  b) 1348.5 kJ  c) 1278,7 kJ  d) 1246,5 kJ Formula: Q = (h2 – p2v2) –(h1 –p1v1)

Last Answer : 1378.7 kJ

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : What is the equation for the work done by a constant temperature system?  A. W = mRTln(V2-V1)  B. W = mR( T2-T1 ) ln( V2/V1)  C. W = mRTln (V2/V1)  D. W = RT ln (V2/V1) Formula : W=∫ pdV lim1,2 ∫ = mRT / V

Last Answer : W = mRTln (V2/V1)

Description : There are 1.36 kg of gas, for which R = 377 J/kg.k and k = 1.25, that undergo a nonflow constant volume process from p1 = 551.6 kPa and t1 = 60°C to p2 = 1655 kPa. During the process the gas is internally stirred and ... (Formula: T2= T1p2/ p1)  a. 999 K  b. 888 K  c. 456 K  d. One of the above

Last Answer : 999 K

Description : Ten cu. ft of air at 300psia and 400°F is cooled to 140°F at constant volume. What is the transferred heat?  a.-120Btu  b. -220Btu  c.-320Btu  d. -420Btu formula: Q= mcv(T2-T1)

Last Answer : -420Btu

Description : Ten cu ft. of air at 300 psia 400°F is cooled to 140°F at constant volume. What is the final pressure? (formula: p2 = p1T2/T1)  a. 0  b. 209 psia  c. - 420 psia  d. None of the above

Last Answer : 209 psia

Description : 3.0 lbm of air are contained at 25 psia and 100 ˚F. Given that Rair = 53.35 ft-lbf/lbm- ˚F, what is the volume of the container?  A.10.7 ft^3  B.14.7 ft^3  C.15 ft^3  D.24.9 ft^3 Formula: use the ideal gas law pV = mRT T = (100 +460) ˚R V = mRT/p

Last Answer : 24.9 ft^3

Description : For heat engine operating between two temperatures (T1>T2), what is the maximum efficiency attainable?  A. Eff = 1 – (T2/T1)  B. Eff = 1 - (T1/T2)  C. Eff = T1 - T2  D. Eff = 1 - (T2/T1)^2

Last Answer : Eff = 1 – (T2/T1)

Description : Which of the following is the mathematical representation of the Charles’s law?  A. V1/V2= P2/P1  B. V1/T1=V2/T2  C. V1/T2=V2/T1  D. V1/V2=√P2/√P1

Last Answer : V1/T1=V2/T2

Description : A perfect gas at 27°C is heated at constant pressure till its volume is double. The final temperature is  (a) 54°C  (b) 327°C  (c) 108°C  (d) 654°C  (e) 600°C

Last Answer : Answer : b

Description : If a gas is heated against a pressure, keeping the volume constant, then work done will be equal to  (a) + v  (b) – ve  (c) zero  (d) pressure x volume  (e) any where between zero and infinity.

Last Answer : Answer : c

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : A certain gas, with cp = 0.529Btu/ lb. °Rand R = 96.2ft.lb/lb. °R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5psia. Compute for T2.  a.1520°R  b. 1620°R  c. 1720°R  d. 1820°R formula: T2= T1V2/V1

Last Answer : 1620°R

Description : A certain gas, with cp = 0.529Btu/lb.°R and R = 96.2 ft.lb/lb.°R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5 psia. Compute for T2. (Formula: T2= T1V2/V1)  a. 460°R  b. 270°R  c. 1620 °R  d. None of the above

Last Answer : 1620 °R

Description : Oxygen at 15ºC and 10.3 Mpa gauge pressure occupies 600L. What is the occupied by the oxygen at 8.28 Mpa gauge pressure and 35ºC?  a. 789.32 L  b. 796.32 L  c. 699 L  d. 588 L V2= P1V1/T1P2

Last Answer : 796.32 L

Description : An ideal gas of volume 1liter and pressure 10 bar undergoes a quasistatic adiabatic expansion until the pressure drops to 1 bar. Assume γ to be 1.4 what is the final volume?  a. 3.18 l  b. 4.18 l  c. 5.18 l  d. 6.18 l

Last Answer : 5.18 l

Description : Gas is enclosed in a cylinder with a weighted piston as the stop boundary. The gas is heated and expands from a volume of 0.04 m^3 to 0.10 m^3 at a constant pressure of 200kPa.Calculate the work done by the system.  A. 8 kJ  B. 10 kJ  C.12 kJ  D.14 kJ Formula: W = p(V2-V1)

Last Answer : 12 kJ

Description : A gas is enclosed in a cylinder with a weighted piston as the top boundary. The gas is heated and expands from a volume of 0.04 m3 to 0.10 m3 at a constant pressure of 200 kPa. Find the work done on the system.  a. 5 kJ  b. 15 kJ  c. 10 kJ  d. 12 kJ

Last Answer : 12 kJ

Description : In the above problem, compute for the mass. (Formula: m = p1V1 / RT1)  a. 0.2148 lb  b. 0.2134 lb  c. 0.1248 lb  d. None of the above

Last Answer : 0.2148 lb

Description : What horse power is required to isothermally compress 800 ft^3 of Air per minute from 14.7 psia to 120 psia?  A. 28 hp  B.108 hp  C.256 hp  D.13900 hp Formula: W= p1V1 ln (p1/p2) Power = dW / dt

Last Answer : 108 hp

Description : The flow energy of 5 ft3 of a fluid passing a boundary to a system is 80,000 ft-lb. Determine the pressure at this point.  a. 222 psi  b. 333 psi  c. 444 psi  d. 111 psi formula: Ef= pV

Last Answer : 111 psi

Description : A vertical column of water will be supported to what height by standard atmospheric pressure. If the Y w = 62.4lb/ft3 po = 14.7 psi.  a. 44.9 ft  b. 33.9 ft  c. 22.9 ft  d. 55.9 ft formula: ho= po/Yw

Last Answer : 33.9 ft

Description : What is the SI unit of pressure?  A. Atm  B. Bar  C. Pa  D. Psi

Last Answer : Pa

Description : Which of the following is NOT a value of the standard atmospheric pressure?  A. 1 bar  B. 1 atm  C. 1 kgf/cm^2  D. 14.223 psi

Last Answer : 14.223 psi

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : An ideal gas is maintained at constant temperature. If the pressure on the gas is doubled, the volume is  a. increased fourfold  b. doubled  c. reduced by half  d. decreased by a quarter

Last Answer : reduced by half

Description : “At constant pressure, the volume of a gas is inversely proportional to the pressure”. This is known as ______.  A. Boyle’s Law  B. Charles’s Law  C. Gay-Lussac Law  D. Ideal gas law

Last Answer : Boyle’s Law

Description : The temperatures of the ideal gas temperature scale are measured by using a ______.  A. Constant-volume gas thermometer  B. Constant-mass gas thermometer  C. Constant-temperature gas thermometer  D. Constant-pressure gas thermometer

Last Answer : Constant-volume gas thermometer

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : Gas being heated at constant volume is undergoing the process of.  a. isometric  b. specific heat  c. enthalpy  d. isothermal

Last Answer : isometric

Description : When the gas is heated at constant volume, the heat supplied increases the internal energy of the gas.  A.True  B.False

Last Answer : Answer: A

Description : For a perfect gas, according to Boyle’s law (where p = Absolute pressure, v = Volume, and T = Absolute temperature)  A. p v = constant, if T is kept constant  B. v/T = constant, if p is kept constant  C. p/T = constant, if v is kept constant  D. T/p = constant, if v is kept constant

Last Answer : Answer: A

Description : An ideal gas is compressed in a cylinder so well insulated that there is essentially no heat transfer. The temperature of gas  a. Remains constant  b. increases  c. decreases  d. is basically zero

Last Answer : increases

Description : The compressibility factor, x, is used for predicting the behavior of nonideal gases. How is the compressibility ty factor defined relative to an ideal gas? (subscript c refers to critical value)  A. ... compressibility factor, x, is an dimensionless constant given by pV=zRT. Therefore z = pV / RT

Last Answer : z = pV/ RT

Description : An ideal gas whose specific heats are constant is called _____.  A. Perfect gas  B. Natural gas  C. Artificial gas  D. Refined gas

Last Answer : Perfect gas

Description : In the equation Pv = RT, the constant of proportionality R is known as ______.  A. Universal gas constant  B. Gas constant  C. Ideal gas factor  D. Gas index

Last Answer : Gas constant

Description : Refer to problem # 11. Determine the force that accelerates if to 12 m/s^2. horizontally along frictionless plane.  A. 2474.23 N  B. 2574.23 N  C. 3474.23 N  D. 2374.23 N Formula : M = wk / g F = ma /k

Last Answer : 2474.23 N

Description : An engine operates between temperatures of 900°Kandr2 and another engine between T2 and 400°K For both to do equal work, value of T2 will be  (a) 650°K  (b) 600°K  (c) 625°K  (d) 700°K  (e) 750°K.

Last Answer : Answer : a

Description : According to Gay-Lussac law for a perfect gas, p/T = constant, if v is kept constant.  A. True  B. False

Last Answer : Answer: A