A thin spherical shell under internal pressure will fail under
a. Maximum shear stress
b. Principal compressive stress
c. Principal tensile stress
d. None

1 Answer

Answer :

c. Principal tensile stress

Related questions

Description : A thin cylindrical shell under internal pressure can fail by a. Shear b. Compression c. Tension d. None

Last Answer : c. Tension

Description : A power transmitting ductile material shaft under P, T and M will fail under (a) Tensile considerations only (b) Compressive considerations only (c) Shear considerations only (d) None

Last Answer : (c) Shear considerations only

Description : When a shaft is subjected to a twisting moment, every cross-section of the shaft will be under (a) Tensile stress (b) Compressive stress (c) Shear stress (d) All of these

Last Answer : c) Shear stress

Description : The type of stress induced in a closed coiled helical tension spring is a. tensile b. compressive c. torsional shear d. tensile and compressive

Last Answer : c. torsional shear

Description : When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is (a) Tensile (b) Compressive (c) Shear (d) None of the above

Last Answer : (b) Compressive

Description : When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is (a) Tensile (b) Compressive (c) Shear (d) Temperature

Last Answer : (d) Temperature

Description : A spherical pressure vessel is made of thin magnesium plate 0.25 cm thick. The main diameter of the sphere is 600 cm and allowable stress in tension is 900 kg/cm2. The safe internal gas pressure for the vessel would be a) 0.5 kg/cm2 b) 1.5 kg/cm2 c) 4.5 kg/cm2 d) 5.7 kg/cm2

Last Answer : b) 1.5 kg/cm2

Description : Among the cylindrical and spherical thin vessels of same material, diameter and pressure which has the lesser thickness a. Cylindrical shell b. Spherical shell c. Cylindrical shell with semi spherical heads d. None

Last Answer : b. Spherical shell

Description : A thin cylindrical under internal pressure can fail along the a. Longitudinal joint b. Circumferential joint c. Longitudinal as well as circumferential joint d. None

Last Answer : c. Longitudinal as well as circumferential joint

Description : Design of a thin shell under pressure is done on the basis of a. Radial stress b. Longitudinal stress c. Hoop stress d. All the three stresses

Last Answer : c. Hoop stress

Description : Stresses in a thin cylindrical shell under internal pressure is independent of a. Diameter b. Thickness c. Length d. Diameter and thickness

Last Answer : c. Length

Description : It is a secondary shaft used to counter the direction of main shaft. 81. Shafts are subjected to ______ forces. a) Compressive b) Tensile c) Shear d) twisting

Last Answer : b) Tensile

Description : For a homogeneous & isotropic body under hydrostatic pressure, which theory of elastic failure does not fail (a) Firstly Maximum Principal Theory (b) Secondly Maximum Shear Stress Theory (c) Thirdly Maximum Principal Energy Theory (d) None

Last Answer : (a) Firstly Maximum Principal Theory

Description : In a thick cylindrical shell subjected to an internal pressure (p), the radial stress across the thickness of a cylinder is a) maximum at the outer surface and minimum at the inner surface b) maximum ... and zero at the outer surface d) maximum at the outer surface and zero at the inner surface

Last Answer : c) maximum at the inner surface and zero at the outer surface

Description : A principal stress is a. Tensile or shear stress b. Compressive or shear stress c. Tensile or compressive stress d. None

Last Answer : c. Tensile or compressive stress

Description : A principal plane is a plane of (a) Zero tensile stress (b) Zero compressive stress (c) Zero shear stress (d) None

Last Answer : (c) Zero shear stress

Description : Maximum shear stress in a thick shell is a) (σh+ σl)/2 b) (σh+ σr)/2 c) (σh– σl)/2 d) None

Last Answer : b) (σh+ σr)/2

Description : When a thin cylindrical shell is subjected to an internal pressure, there will be a) a decrease in diameter and length of the shell b) an increase in diameter and length of the shell c) an ... and decrease in length of the shell d) a decrease in diameter and increase in length of the shell

Last Answer : b) an increase in diameter and length of the shell

Description : The region of the cross-section of a column in which compressive load may be applied without producing any tensile stress, is known as the core of the cross-section. In circular columns the radius of the core, ... One-third of the radius (c) One-quarter of the radius (d) One-fifth of the radius

Last Answer : (c) One-quarter of the radius

Description : In a simply supported beam loaded with U.D.L over the whole section, the bending stress is …………. at top and ………….. at bottom. (a) Compressive, tensile (b) Tensile, compressive (c) Tensile, zero (d) Compressive, zero

Last Answer : (a) Compressive, tensile

Description : What is the ratio of hoop stresses in a spherical vs cylindrical shell of same diameter, thickness and under same pressure? a. 4:1 b. 2:1 c. 1:2 d. 1:4

Last Answer : c. 1:2

Description : In a thin shell which stress is negligible a) σh b) σl c) σr d) None

Last Answer : c) σr

Description : Radial stress in a thin shell is given by a. pD/2t b. pD/4t c. pD/3t d. None

Last Answer : d. None

Description : Which stress is the least in a thin shell a. Longitudinal stress b. Hoop stress c. Radial stress d. None

Last Answer : c. Radial stress

Description : Torque and bending moment of 100 kN.m and 200 kN.m acts on a shaft which has external diameter twice of internal diameter. What is the external diameter of the shaft which is subjected to a maximum shear stress of 90 N/mm2? a. 116.5 mm b. 233.025 mm c. 587.1 mm d. 900 mm

Last Answer : c. 587.1 mm

Description : When a section is subjected to two equal and opposite forces tangentially to the section, the stress produced is known as (a) Tensile stress (b) Lateral stress (c) Shear stress (d) No stress

Last Answer : (c) Shear stress

Description : Bulk modulus of elasticity is a. Tensile stress / Tensile strain b. Shear stress / Shear strain c. Tensile stress / Shear strain d. Normal stress on each face of cube / Volumetric strain

Last Answer : d. Normal stress on each face of cube / Volumetric strain

Description : Modulus of rigidity is (a)Tensile stress / Tensile strain (a)Shear stress / Shear strain (a)Tensile stress / Shear strain (a)Shear stress / Tensile strain

Last Answer : (a)Shear stress / Shear strain

Description : Young’s Modulus of elasticity is (a)Tensile stress / Tensile strain (b)Shear stress / Shear strain (c)Tensile stress / Shear strain (d)Shear stress / Tensile strain

Last Answer : a)Tensile stress / Tensile strain

Description : If compressive yield stress and tensile yield stress are equivalent, then region of safety from maximum principal stress theory is of which shape? a) Rectangle b) Square c) Circle d) Ellipse

Last Answer : b) Square

Description : A water main 1 m in diameter contains a fluid having pressure 1 N/mm2. If the maximum permissible tensile stress in the metal is 20 N/mm2, th thickness of the metal required would be a) 2 cm b) 2.5cm c) 1 cm d) 0.5 cm

Last Answer : b) 2.5cm

Description : In the analysis, all the principal stresses are assumed as a. Shear stresses b. Compressive stresses c. Tensile stresses d. None

Last Answer : c. Tensile stresses

Description : Nature of the three principal stresses is a. Firstly All tensile b. Secondly All compressive c. Thirdly All shear d. None

Last Answer : a. Firstly All tensile

Description : Parallel fillet welds are under (i) Shear stress (ii)Compressive stress (iii)Tensile stress (iv)None

Last Answer : (i) Shear stress

Description : Transverse fillet welds are under (i) Shear stress (ii) Compressive stress (iii) Tensile stress

Last Answer : (iii) Tensile stress

Description : Butt welds are under (i) Shear stress (ii) Compressive stress (iii) Tensile stress

Last Answer : (iii) Tensile stress

Description : A thick cylinder under internal fluid pressure’ pi will have maximum stress at the 1. Outer radius 2. Inner radius 3. Mean radius 4. None

Last Answer : 2. Inner radius

Description : A member which is subjected to reversible tensile or compressive stress may fail at a stress lower  than the ultimate stress of the material. This property of metal, is called  (A) Plasticity of the ... ) Elasticity of the metal  (C) Fatigue of the metal  (D) Workability of the metal

Last Answer : (C) Fatigue of the metal

Description : In a spherical dome the hoop stress due to a concentrated load at crown is (A) Compressive everywhere (B) Tensile everywhere (C) Partly compressive and partly tensile (D) Zero

Last Answer : Answer: Option B

Description : A close coiled spring under axial load produces (a) Bending stresses (b) Shear stresses (c) Tensile stresses (d) None

Last Answer : (b) Shear stresses

Description : Propagation of fatigue failure is always due to compressive stresses. (a) Due to bending (b) Due to tensile (c) Due to fatigue (d) None of the listed

Last Answer : (b) Due to tensile

Description : Tensile and compressive stresses in a beam of symmetrical section are (a) σt = σc (b) σt > σc (c) σt < σc (d) None

Last Answer : (a) σt = σc

Description : Tensile and compressive stresses in a beam of un-symmetrical section are (a) σt = σc (b) σt =0 (c) σc =0 (d) None

Last Answer : (d) None

Description : Tensile and compressive stresses in a beam of symmetrical section are (a) σt = σc (b) σt > σc (c) σt < σc (d) None

Last Answer : (a) σt = σc

Description : The value of Poison’s ratio depends upon (a) Nature of load, tensile or compressive (b) Magnitude of load (c) Material of the test specimen (d) Dimensions of the test specimen

Last Answer : (c) Material of the test specimen

Description : The principal strain due to σ1(tensile) and σ2 (Compressive ) stress is (a) Firstly (b)Secondly (c)Thirdly (d) None

Last Answer : (b)Secondly

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre

Description : Which of the following is not a basic type of strain? (a)Compressive strain (b)Shear strain (c)Area strain (d)Volume strain

Last Answer : (c)Area strain

Description : The spokes of the flywheel are subjected to 1. direct shear stress 2. torsional shear stress 3. tensile stress 4. compressive stress

Last Answer : 3. tensile stress

Description : The rim of the flywheel is subjected to, 1. direct tensile stress and bending stress 2. torsional shear stress and bending stress 3. direct shear stress and bending stress 4. compressive stress and bending stress

Last Answer : 1. direct tensile stress and bending stress