If is the net upward pressure on a square footing of side for a square column of side , the
maximum bending moment is given by
(A) B.M = pb (c - a)/4
(B) B.M = pb (b - a)²/4
(C) B.M = pb (b - a)²/8
(D) B.M = pb (b + a)/8

1 Answer

Answer :

Answer: Option C

Related questions

Description : If W is total load per unit area on a panel, D is the diameter of the column head, L is the span in two directions, then the sum of the maximum positive bending moment and average of the negative bending moment for the design of the span ... (L + 2D/3)² (C) WL/10 (L - 2D/3)² (D) WL/12 (L - D/3)²

Last Answer : Answer: Option C

Description : In a combined footing for two columns carrying unequal loads, the maximum hogging bending moment occurs at (A) Less loaded column (B) More loaded column (C) A point of the maximum shear force (D) A point of zero shear force

Last Answer : Answer: Option D

Description : Based on punching shear consideration, the overall depth of a combined footing under a column A, is (A) (Area of the column A Safe punching stress)/Load on column A (B) (Perimeter of column A ... punching stress)/(Load on column A Upward pressure Area of the column) (D) None of these

Last Answer : Answer: Option B

Description : If P kg/m2 is the upward pressure on the slab of a plain concrete footing whose projection on either side of the wall is a cm, the depth of foundation D is given by (A) D = 0.00775 aP (B) D = 0.0775 aP (C) D = 0.07775 aP (D) D = 0.775 Pa

Last Answer : Answer: Option A

Description : The critical section for finding maximum bending moment for footing under masonry wall is located (A) At the middle of the wall (B) At the edge of the wall (C) Halfway between the middle and edge of the wall (D) At a distance equal to effective depth of footing from the edge of the wall

Last Answer : Answer: Option C

Description : If q is the punching shear resistance per unit area a, is the side of a square footing for a column of side b, carrying a weight W including the weight of the footing, the depth (D) of the footing from punching shear consideration ... - b²)/4a²bq (C) D = W (a² - b²)/8a²bq (D) D = W (a² - b²)/4abq

Last Answer : Answer: Option B

Description : The self-weight of the footing, is (A) Not considered for calculating the upward pressure on footing (B) Also considered for calculating the upward pressure on footing (C) Not considered for calculating the area of the footing (D) Both (b) and (c)

Last Answer : Answer: Option A

Description : The depth of concrete bed of the foundation depends upon (A) The projection of the concrete block beyond the footing over it (B) The upward soil pressure (C) The mix of the concrete (D) All the above

Last Answer : Answer: Option D

Description : A square column carries a load P at the centroid of one of the quarters of the square. If a is the  side of the main square, the combined bending stress will be  (A) p/a² (B) 2p/a² (C) 3p/a² (D) 4p/a²

Last Answer : (C) 3p/a²

Description : If the length of a combined footing for two columns l metres apart is L and the projection on the left side of the exterior column is x, then the projection y on the right side of the exterior column, in order to have a uniformly distributed ... l - ) (C) y = L/2 - (l + ) (D) y = L/2 - (l - )

Last Answer : Answer: Option D

Description : If the length of a wall on either side of a lintel opening is at least half of its effective span L, the load W carried by the lintel is equivalent to the weight of brickwork contained in an equilateral triangle, producing a maximum bending moment (A) WL/2 (B) WL/4 (C) WL/6 (D) WL/8

Last Answer : Answer: Option C

Description : A single rolling load of 8 kN rolls along a girder of 15 m span. The absolute maximum bending moment will be (A) 8 kN.m (B) 15 kN.m (C) 30 kN.m (D) 60 kN.m

Last Answer : (C) 30 kN.m

Description : A simply supported beam of span L carries a concentrated load W at its mid-span. The maximum  bending moment M is  (A) WL/2  (B) WL/4  (C) WL/8  (D) WL/12

Last Answer : (B) WL/4

Description : Two footings, one circular and the other square, are founded on the surface of a purely cohesionless soil. The diameter of the circular footing is the same as that of the side of the square footing. The ratio between their ultimate bearing capacities will be : (a) 1.0 (b) 1.3 (c) 1.33 (d) 0.75

Last Answer : (d) 0.75

Description : A 300 mm square bearing plate settles by 15 mm in a plate load test on a cohesive soil when the intensity of loading is 0.2 N/mm². The settlement of a prototype shallow footing 1 m square under the same intensity of loading is (A) 15 mm (B) 30 mm (C) 50 mm (D) 167 mm

Last Answer : (C) 50 mm

Description : A 600 mm square bearing plate settles by 15 mm in plate load test on a cohesion-less soil under an intensity of loading of 0.2 N/ram². The settlement of a prototype shallow footing 1 m square under the same intensity of ... (A) 15 mm (B) Between 15 mm and 25 mm (C) 25 mm (D) Greater than 25 mm

Last Answer : Answer: Option B

Description : The most critical consideration in the design of a rolled steel column carrying axial loads is the (a) Percentage elongation at yield and the net cross-sectional area (b) Critical bending ... at ultimate load (d) Compressive strength based on slenderness ratio and gross cross-sectional area.

Last Answer : (d) Compressive strength based on slenderness ratio and gross cross-sectional area.

Description : A shaft is subjected to bending moment M and a torque T simultaneously. The ratio of the  maximum bending stress to maximum shear stress developed in the shaft, is  (A) M/T (B) T/M (C) 2M/T (D) 2T/M

Last Answer : (C) 2M/T

Description :  shaft subjected to a bending moment M and a torque T, experiences  (A) Maximum bending stress = 32M d 3 (B) Maximum shear stress = 16 T d 3 (C) Both (a) and (b)  (D) Neither (a) nor (b)

Last Answer : (C) Both (a) and (b) 

Description : Maximum deflection of a cantilever due to pure bending moment M at its free end, is (A) ML²/3EI (B) ML²/4EI (C) ML²/6EI (D) ML²/2EI

Last Answer : (D) ML²/2EI

Description : If a shaft is simultaneously subjected to a toque T and a bending moment M, the ratio of maximum bending stress and maximum shearing stress is (A) M/T (B) T/M (C) 2M/T (D) 2T/M

Last Answer : (C) 2M/T

Description : A beam of length L is pinned at both ends and is subjected to a concentrated bending couple of  moment M at its centre. The maximum bending moment in the beam is  (A) M (B) M/2  (C) M/3  (D) ML/2 

Last Answer : (A) M

Description : is the pre-stressed force applied to the tendon of a rectangular pre-stressed beam whose area of cross section is and sectional modulus is . The maximum stress in the beam, subjected to a maximum bending moment , is (A) f = (P/A) + (Z/M) ... ) + (M/Z) (C) f = (P/A) + (M/Z) (D) f = (P/A) + (M/6Z)

Last Answer : Answer: Option C

Description : is the pre-stressed force applied to tendon of a rectangular pre-stressed beam whose area of cross section is and sectional modulus is . The minimum stress on the beam subjected to a maximum bending moment is (A) f = (P/A) - (Z/M) (B) f = (A/P) - (M/Z) (C) f = (P/A) - (M/Z) (D) f = (P/A) - (M/6Z)

Last Answer : Answer: Option C

Description : In prestressed concrete members, the shear force depends upon (a) Distributed load (b) Torsion (c) Concentrated load (d) Variation in net bending moment

Last Answer : (d) Variation in net bending moment

Description : When a series of wheel loads crosses a simply supported girder, the maximum bending moment under any given wheel load occurs when (A) The centre of gravity of the load system is midway between the centre of ... the centre of span and the centre of gravity of the load system (D) None of the above

Last Answer : (B) The centre of span is midway between the centre of gravity of the load system and the wheel load under consideration

Description : Bottom bars under the columns are extended into the interior of the footing slab to a distance greater than (A) 42 diameters from the centre of the column (B) 42 diameters from the inner edge of ... ) 42 diameters from the outer edge of the column (D) 24 diameters from the centre of the column

Last Answer : Answer: Option C

Description : Top bars are extended to the projecting parts of the combined footing of two columns Ldistance apart for a distance of (A) 0.1 L from the outer edge of column (B) 0.1 L from the centre edge of column (C) Half the distance of projection (D) One-fourth the distance of projection

Last Answer : Answer: Option B

Description : Pick up the correct statement from the following: (A) A combined footing is so proportioned that centre of gravity of supporting area coincides with centre of gravity of two column loads (B) A ... in shape (C) Trapezoidal shaped footings may be provided under any loading (D) All the above

Last Answer : Answer: Option D

Description : In soils possessing low bearing capacity, the type of foundation generally provided, is (A) Column footing (B) Grillage footing (C) Raft footing (D) All the above

Last Answer : Option D

Description : Minimum clear cover (in mm) to the main steel bars in slab, beam, column and footing respectively, are (a) 10, 15, 20 and 25 (b) 15, 25, 40 and 75 (c ) 20, 25, 30 and 40 (d) 20, 35, 40 and 75

Last Answer : (b) 15, 25, 40 and 75

Description : The maximum bending moment for a simply supported beam with a uniformly distributed  load w/unit length, is  (A) WI/2  (B) WI²/4  (C) WI²/8  (D) WI²/12

Last Answer : (C) WI²/8 

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8

Description : For stairs spanning l metres longitudinally between supports at the bottom and top of a flight carrying a load w per unit horizontal area, the maximum bending moment per metre width, is (A) wl²/4 (B) wl²/8 (C) wl²/12 (D) wl²/16

Last Answer : Answer: Option D

Description : If longitudinally spanning stairs are casted along with their landings, the maximum bending moment per metre width, is taken as (A) wl²/4 (B) wl²/8 (C) wl²/10 (D) wl²/12

Last Answer : Answer: Option B

Description : If S is the potential infiltration, P is rainfall in cm in a drainage of a soil with fair pasture cover, the direct run off Q in cm is given by (A) Q = (P - 0.1 S)²/(P + 0.4 S) (B) Q = (P - 0.2 S)²/(P + 0.6 S) (C) Q = (P - 0.2 S)²/(P + 0.8 S) (D) Q = (P - 0.2 S)²/(P + 0.2 S)

Last Answer : Answer: Option C

Description : If the width of the foundation for two equal columns is restricted, the shape of the footing generally adopted, is (A) Square (B) Rectangular (C) Trapezoidal (D) Triangular

Last Answer : Answer: Option B

Description : A bending moment may be defined as: (A) Arithmetic sum of the moments of all the forces on either side of the section (B) Arithmetic sum of the forces on either side of the section (C) Algebraic sum of the moments of all the forces on either side of the section (D) None of these

Last Answer : (C) Algebraic sum of the moments of all the forces on either side of the section

Description : A doubly reinforced section is used (a) When the members are subjected to alternate external loads and the bending moment in the sections reverses. (b) When the member are subjected to loading eccentric in ... . (c) When the members are subjected to accidental lateral loads . (d) All of the above

Last Answer : (d) All of the above

Description : A simply supported uniform rectangular bar breadth b, depth d and length L carries an isolated  load W at its mid-span. The same bar experiences an extension e under same tensile load. The  ratio of the maximum deflection to the ... (A) L/d (B) L/2d (C) (L/2d)² (D) (L/3d)²

Last Answer : (C) (L/2d)

Description : The bending moment ‘M’ and a torque ‘T’ is applied on a solid circular shaft. If the maximum bending stress equals to maximum shear stress developed, then ‘M’ is equal to (A) T/2 (B) T (C) 2 T (D) 4 T

Last Answer : (A) T/2

Description : Torque and bending moment of 100 kN.m and 200 kN.m acts on a shaft which has external diameter twice of internal diameter. What is the external diameter of the shaft which is subjected to a maximum shear stress of 90 N/mm2? a. 116.5 mm b. 233.025 mm c. 587.1 mm d. 900 mm

Last Answer : c. 587.1 mm

Description : The ratio of maximum bending stress to maximum shear stress on the cross section when a shaft is simultaneously subjected to a torque T and bending moment M, a. T/M b. M/T c. 2T/M d. 2M/T

Last Answer : d. 2M/T

Description : In the given figure, the network of a project represents (A) Activity of an excavation of a footing (B) Activity of an excavation which starts at event No. 1 and ends at even No. 2 (C) Activity of excavation which takes 8 units of time (D) None of thes

Last Answer : (C) Activity of excavation which takes 8 units of time

Description : If M, I, R, E, F, and Y are the bending moment, moment of inertia, radius of curvature, modulus of  elasticity stress and the depth of the neutral axis at section, then  (A) M/I = R/E = F/Y (B) I/M = R/E = F/Y (C) M/I = E/R = E/Y (D) M/I = E/R = Y/F

Last Answer : (C) M/I = E/R = E/Y

Description : A close coil helical spring when subjected to a moment M having its axis along the axis of the helix  (A) It is subjected to pure bending  (B) Its mean diameter will decrease  (C) Its number of coils will increase  (D) All the above 

Last Answer : (A) It is subjected to pure bending 

Description : If Z and I are the section modulus and moment of inertia of the section, the shear force F and bending moment M at a section are related by (A) F = My/I (B) F = M/Z (C) F = dM/dx (D) F Mdx

Last Answer : (C) F = dM/dx

Description : The deep beams are designed for (a) Shear force only (b) Bending moment only (c) Both S.F & B.M (d) Bearing

Last Answer : (b) Bending moment only