The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2 (when, T1 > T2) is given by (T1- T2)/T1. The co efficient of performance (C.O.P.) of a Carnot heat pump operating between T1 and T2is given by
(A) T1/(T1-T2)
(B) T2/(T1-T2)
(C) T1/T2
(D) T2/R1

1 Answer

Answer :

(A) T1/(T1-T2)

Related questions

Description : The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2(when, T1 > T2) is given by (T1- T2)/T1. The co efficient of performance (CO.P.) of a Carnot heat pump operating between T1 and T2is given by (A) T1/(T1-T2) (B) T2/(T1-T2) (C) T1/T2 (D) T2/T1

Last Answer : (B) T2/(T1-T2)

Description : Co-efficient of performance for a reversed Carnot cycle working between temperatures T1 and T2(T1 > T2) is (A) T2/(T1- T2) (B) T1/(T1- T2) (C) (T1- T2)/T1 (D) (T1- T2)/T2

Last Answer : (A) T2/(T1- T2)

Description : Efficiency of a Carnot engine working between temperatures T1 and T2(T1 < T) is (A) (T2- T1)/T2 (B) (T2- T1)/T1 (C) (T1- T2)/T2 (D) (T1- T2)/T1

Last Answer : (A) (T2- T1)/T2

Description : For heat engine operating between two temperatures (T1>T2), what is the maximum efficiency attainable?  A. Eff = 1 – (T2/T1)  B. Eff = 1 - (T1/T2)  C. Eff = T1 - T2  D. Eff = 1 - (T2/T1)^2

Last Answer : Eff = 1 – (T2/T1)

Description : The most efficient heat engine that can operate between two temperature reservoirs T1 and T2 is: w) jet engine x) internal combustion engine y) Carnot engine (pron: car-no) z) steam engine

Last Answer : ANSWER: Y -- CARNOT ENGINE

Description : The thermal efficiency of a reversible heat engine operating between two given thermal reservoirs is 0.4. The device is used either as a refrigerator or as a heat pump between the same reservoirs. Then the coefficient of performance as a ... )R = 1.5; (COP)HP = 2.5 (D) (COP)R = (COP)HP = 2.5

Last Answer : (C) (COP)R = 1.5; (COP)HP = 2.5

Description : The expression, nCv(T2- T1), is for the __________ of an ideal gas. (A) Work done under adiabatic condition (B) Co-efficient of thermal expansion (C) Compressibility (D) None of these

Last Answer : (A) Work done under adiabatic condition

Description : The ratio of equilibrium constants (Kp2/Kp1) at two different temperatures is given by (A) (R/∆H) (1/T1- 1/T2) (B) (∆H/R) (1/T1- 1/T2) (C) (∆H/R) (1/T2- 1/T1) (D) (1/R) (1/T1- 1/T2)

Last Answer : (B) (∆H/R) (1/T1- 1/T2)

Description : The equilibrium constant for a chemical reaction at two different temperatures is given by (A) Kp2/Kp1 = - (∆H/R) (1/T2- 1/T1) (B) Kp2/Kp1 = (∆H/R) (1/T2- 1/T1) (C) Kp2/Kp1 = ∆H (1/T2- 1/T1) (D) Kp2/Kp1 = - (1/R) (1/T2- 1/T1)

Last Answer : (A) Kp2/Kp1 = - (∆H/R) (1/T2- 1/T1)

Description : Efficiency of a heat engine working on Carnot cycle between two temperature levels depends upon the (A) Two temperatures only (B) Pressure of working fluid (C) Mass of the working fluid (D) Mass and pressure both of the working fluid

Last Answer : (A) Two temperatures only

Description : Co-efficient of performance of a Carnot cycle refrigerator operating between - 23°C and + 27°C is (A) 3 (B) 5 (C) 0.5 (D) 1.5

Last Answer : Option A

Description : Out of the following refrigeration cycles, which one has the minimum COP (Co-efficient of performance)? (A) Air cycle (B) Carnot cycle (C) Ordinary vapour compression cycle (D) Vapour compression with a reversible expansion engine

Last Answer : A) Air cycle

Description : For the same draw down in two observations wells at distances r1 and r2, the times after start of  pumping are t1 and t2 hours respectively. The relation which holds good is  (A) t2 = r2/r1 × t1 (B) t2 = (r2/r1)² × t1 (C) t2 = (r2/r1)3  × t1 (D) t2 = (r2/r1) × t1 2

Last Answer : (B) t2 = (r2/r1)² × t1

Description : What is the value of maximum COP in case of absorption refrigeration, if refrigeration provided is at temperature, TR (where, T1 and T2 are source & surrounding temperatures respectively.)? (A) TR/(T2 - TR) (T1 - T2 )/T1 (B) TR ... T1 /(T1 - T2 ) (C) TR/(T1 - TR) (T1 - T2 )/T1 (D) None of these

Last Answer : (A) TR/(T2 - TR) × (T1 - T2 )/T1

Description : What states that thermal efficiencies of all reversible heat engines operating between the same two reservoirs are the same and that no heat engine is more efficient than a reversible one operating between the ... A. Ericson principle  B. Carnot principle  C. Otto principle  D. Stirling principle

Last Answer : Carnot principle

Description : The efficiency of a Carnot engine depends on  (a) working substance  (b) design of engine  (c) size of engine  (d) type of fuel fired  (e) temperatures of source and sink.

Last Answer : Answer : e

Description : What is the highest efficiency of heat engine operating between the two thermal energy reservoirs at temperature limits?  A. Ericson efficiency  B. Otto efficiency  C. Carnot efficiency  D. Stirling efficiency

Last Answer : Carnot efficiency

Description : The Carnot co-efficient of performance (COP) of a domestic air conditioner compared to a household refrigerator is (A) Less (B) More (C) Same (D) Dependent on climatic conditions

Last Answer : (A) Less

Description : Heat transfer by radiation between two bodies at T1 & T2 and in an ambient temperature of Ta °C depends on (A) T1 - T2 (B) T1 - Ta (C) T2 - Ta (D) None of these

Last Answer : (D) None of these

Description : To obtain integrated form of Clausius-Clapeyron equation, ln (P2/P1) = (∆HV/R) (1/T1- 1/T2) from the exact Clapeyron equation, it is assumed that the (A) Volume of the liquid phase is negligible compared to ... gas (C) Heat of vaporisation is independent of temperature (D) All (A), (B) & (C)

Last Answer : (D) All (A), (B) & (C)

Description : Absolute zero temperature signifies the (A) Minimum temperature attainable (B) Temperature of the heat reservoir to which a Carnot engine rejects all the heat that is taken in (C) Temperature of the heat reservoir to which a Carnot engine rejects no heat (D) None of these

Last Answer : (C) Temperature of the heat reservoir to which a Carnot engine rejects no heat

Description : A refrigerator may be termed as a (A) Heat pump (B) Heat engine (C) Carnot engine (D) None of these

Last Answer : (A) Heat pump

Description : Which of the following is the Ideal gas law (equation)?  A. V/T = K  B. V= k*(1/P)  C. P1/T1 = P2/T2  D. PV = nRT

Last Answer : PV = nRT

Description : The clock period is denoted by: a. T p b. T1+T2+T3-------+T n c. Pt d. None of these

Last Answer : a. T p

Description : The expression for entropy change given by, ΔS = nR ln (V2/V1) + nCvln (T2/T1) is valid for (A) Reversible isothermal volume change (B) Heating of a substance (C) Cooling of a substance (D) Simultaneous heating and expansion of an ideal gas

Last Answer : (D) Simultaneous heating and expansion of an ideal gas

Description : The following heat engine produces power of 100,000 kW. The heat engine operates between 800 K and 300 K. It has a thermal efficiency equal to 50% of that of the Carnot engine for the same temperature. The rate at which heat is ... is (A) 100,000 kW (B) 160,000 kW (C) 200,000 kW (D) 320,000 kW

Last Answer : (D) 320,000 kW

Description : Ten cu. ft of air at 300psia and 400°F is cooled to 140°F at constant volume. What is the transferred heat?  a.-120Btu  b. -220Btu  c.-320Btu  d. -420Btu formula: Q= mcv(T2-T1)

Last Answer : -420Btu

Description : There are 1.36 kg of gas, for which R = 377 J/kg.k and k = 1.25, that undergo a nonflow constant volume process from p1 = 551.6 kPa and t1 = 60°C to p2 = 1655 kPa. During the process the gas is internally stirred and ... (Formula: T2= T1p2/ p1)  a. 999 K  b. 888 K  c. 456 K  d. One of the above

Last Answer : 999 K

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : What is a heat engine that operates on the reversible Carnot cycle called?  A. Carnot heat engine  B. Ideal heat engine  C. Most efficient heat engine  D. Best heat engine

Last Answer : Carnot heat engine

Description : According to first law of thermodynamics  (a) mass and energy are mutually convertible  (b) Carnot engine is most efficient  (c) heat and work are mutually convertible  (d) mass and light are mutually convertible  (e) heat flows from hot substance to cold substance.

Last Answer : Answer : c

Description : An engine operates between temperatures of 900°Kandr2 and another engine between T2 and 400°K For both to do equal work, value of T2 will be  (a) 650°K  (b) 600°K  (c) 625°K  (d) 700°K  (e) 750°K.

Last Answer : Answer : a

Description : The expression for entropy change, ΔS = n Cp. ln (T2/T1), is valid for the __________ of a substance. (A) Simultaneous pressure & temperature change (B) Heating (C) Cooling (D) Both (B) and (C)

Last Answer : (D) Both (B) and (C)

Description : Efficiency of a Carnot engine is given as 80%. If the- cycle direction be reversed, what will be the value of COP ofreversed Carnot cycle (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25

Last Answer : Ans: d

Description : Pick out the correct statement. (A) The available energy in an isolated system for all irreversible (real) processes decreases (B) The efficiency of a Carnot engine increases, if the sink temperature is decreased ... condition is the change in Helmholtz free energy (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Which of the following has the least thermal efficiency? (A) Steam engine (B) Carnot engine (C) Diesel engine (D) Otto engine

Last Answer : A) Steam engine

Description : Thermal efficiency of a Carnot engine can approach 100%, only when the temperature of the (A) Cold reservoir approaches zero (B) Hot reservoir approaches infinity (C) Either (A) or (B) (D) Neither (A) nor (B)

Last Answer : C) Either (A) or (B)

Description : Pick out the wrong statement. (A) Trouton's ratio of non-polar liquids is calculated using Kistyakowsky equation (B) Thermal efficiency of a Carnot engine is always less than 1 (C) An equation relating pressure, volume and temperature of a gas is called ideal gas equation (D) None of these

Last Answer : (C) An equation relating pressure, volume and temperature of a gas is called ideal gas equation

Description : Why does CSF appears to be dark in T1 and white in T2?

Last Answer : I think that it is because the two types of MRI detirmine to color differently. T1 determines color based on spin-lattice relaxation time, while T2 determine color based on spin-spin relation time. Both ... dark. Since cerebrospinal fluid is mostly water, it shows up dark in T1 and light in T2.

Description : What is the difference between T1 and T2 mri scans?

Last Answer : Wikipedia has some stuff to get you going: http://en.wikipedia.org/wiki/MRI#Basic_MRI_scans

Description : If w is the angular velocity of the pulley and T1 and T2 are tensions of driving and driven side then power transmitted equals a.(T1 + T2) w b.(T1 + 2T2) w c.107 dynes d.(T1 - T2) w e.wT1

Last Answer : d. (T1 - T2) w

Description : Let R be a relation defined on the set A of all triangles such that R = {(T1, T2) : T1 is similar to T2}. Then R is -Maths 9th

Last Answer : (d) An equivalence relation.Every triangle is similar to itself, so (T1, T1) ∈ R ⇒ R is reflexive. (T1, T2) ∈ R ⇒ T1 ~ T2 ⇒T2 ~ T1, ⇒ (T2, T1) ∈ R ⇒ R is symmetrictransitive. ∴ R is an equivalence relation.

Description : What digital carrier transmits a digital signal at 274.176 Mbps? A. T1 B. T3 C. T2 D. T4

Last Answer : D. T4

Description : What carrier system multiplexes 96 voice band channels into a single 6.312 Mbps data signal? A. T1 carrier system B. T2 carrier system C. T1C carrier system D. T3 carrier system

Last Answer : B. T2 carrier system

Description : A digital carrier facility used to transmit a DSI-formatted signal at 1.544. Mbps. A. T2 B. T1 C. T4 D. T3

Last Answer : B. T1

Description : A Term is either an individual constant (a 0-ary function), or a variable, or an n-ary function applied to n terms: F(t1 t2 ..tn). a) True b) False

Last Answer : a) True

Description : Bamboo plant is growing in a fir forest then what will be the trophic level of it? (a) First trophic level (T1) (b) Second trophic level (T2) (c) Third trophic level (T3) (d) Fourth trophic level (T4)

Last Answer : a) First trophic level (T1)

Description : Which of the following high-speed circuits is the fastest? A) T1 B) T2 C) T3 D) DS3

Last Answer : DS3

Description : S1 and S2 are the draw downs in an observation well at times t1 and t2 after pumping. For  discharge Q and coefficient of transmissibility T, the relationship, is  (A) S2 - S1 = (2.3Q/ ) log10 (t2/t1)  (B) S2 - S1 ... - S1 = (2.3Q/4 ) loge (t2/t1)  (D) S2 - S1 = (2.3Q/4 ) loge (t1/t2

Last Answer : (B) S2 - S1 = (2.3Q/4 ) log10 (t2/t1) 

Description : Assuming compression is according to the Law PV = C, Calculate the initial volume of the gas at a pressure of 2 bars w/c will occupy a volume of 6m³ when it is compressed to a pressure of 42 Bars.  a) 130m³  b) 136m³  c) 120m³  d) 126m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 126m³