For heat engine operating between two temperatures (T1>T2), what is the maximum efficiency attainable?  A. Eff = 1 – (T2/T1)  B. Eff = 1 - (T1/T2)  C. Eff = T1 - T2  D. Eff = 1 - (T2/T1)^2

1 Answer

Answer :

Eff = 1 – (T2/T1)

Related questions

Description : The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2 (when, T1 > T2) is given by (T1- T2)/T1. The co efficient of performance (C.O.P.) of a Carnot heat pump operating between T1 and T2is given by (A) T1/(T1-T2) (B) T2/(T1-T2) (C) T1/T2 (D) T2/R1

Last Answer : (A) T1/(T1-T2)

Description : The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2(when, T1 > T2) is given by (T1- T2)/T1. The co efficient of performance (CO.P.) of a Carnot heat pump operating between T1 and T2is given by (A) T1/(T1-T2) (B) T2/(T1-T2) (C) T1/T2 (D) T2/T1

Last Answer : (B) T2/(T1-T2)

Description : Ten cu. ft of air at 300psia and 400°F is cooled to 140°F at constant volume. What is the transferred heat?  a.-120Btu  b. -220Btu  c.-320Btu  d. -420Btu formula: Q= mcv(T2-T1)

Last Answer : -420Btu

Description : There are 1.36 kg of gas, for which R = 377 J/kg.k and k = 1.25, that undergo a nonflow constant volume process from p1 = 551.6 kPa and t1 = 60°C to p2 = 1655 kPa. During the process the gas is internally stirred and ... (Formula: T2= T1p2/ p1)  a. 999 K  b. 888 K  c. 456 K  d. One of the above

Last Answer : 999 K

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : An engine operates between temperatures of 900°Kandr2 and another engine between T2 and 400°K For both to do equal work, value of T2 will be  (a) 650°K  (b) 600°K  (c) 625°K  (d) 700°K  (e) 750°K.

Last Answer : Answer : a

Description : Assuming compression is according to the Law PV = C, Calculate the initial volume of the gas at a pressure of 2 bars w/c will occupy a volume of 6m³ when it is compressed to a pressure of 42 Bars.  a) 130m³  b) 136m³  c) 120m³  d) 126m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 126m³

Description : The pressure gauge on a 2000 m³ tank of oxygen gas reads 600 kPa. How much volumes will the oxygen occupied at pressure of the outside air 100 kPa?  a) 14026.5 m³  b) 15026.5 m³  c) 13026.5 m³  d) 16026.5 m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 14026.5 m³

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : A gas having a volume of100 ft³ at 27ºC is expanded to 120 ft³by heated at constant pressure to what temperature has it been heated to have this new volume?  a. 87°C  b. 85°C  c. 76°C  d. 97°C t2= T2–T1

Last Answer : 87°C

Description : A certain gas with cp = 0.529Btu/lb°R and R = 96.2ft/lbºR expands from 5 ft and 80ºF to 15 ft while the pressure remains constant at 15.5 psia.  a. T2=1.620ºR, ∫H = 122.83 Btu  b. T2 = 2°R, ∫H = 122.83 Btu  c. ... , ∫H = 122.83 Btu  d. T2 = 1°R, ∫H = 122.83 Btu T2= V2(t2)/V1 and ∫H = mcp (T2-T1)

Last Answer : T2=1.620ºR, ∫H = 122.83 Btu

Description : The volume of the gas held at constant pressure increases 4 cm² at 0°C to 5cm². What is the final pressure?  a. 68.65ºC  b. 68.25ºC  c. 70.01°C  d. 79.1ºC t2= T2–T1

Last Answer : 981 N

Description : An ideal gas at 45psig and 80ºF is heated in the close container to 130ºF. What is the final pressure?  a. 65.10 psi  b. 65.11 psi  c. 65.23 psi  d. 61.16 psi P1V1/T1= P2V2/T2;V = Constant

Last Answer : 65.23 psi

Description : What is the equation for the work done by a constant temperature system?  A. W = mRTln(V2-V1)  B. W = mR( T2-T1 ) ln( V2/V1)  C. W = mRTln (V2/V1)  D. W = RT ln (V2/V1) Formula : W=∫ pdV lim1,2 ∫ = mRT / V

Last Answer : W = mRTln (V2/V1)

Description : What is the resulting pressure when one pound of air at 15 psia and 200 ˚F is heated at constant volume to 800 ˚F?  A.15 psia  B. 28.6 psia  C. 36.4 psia.  D. 52.1 psia Formula : T1/p1 = T2/p2 p2= p1T2 / T1

Last Answer : 28.6 psia

Description : Which of the following is the mathematical representation of the Charles’s law?  A. V1/V2= P2/P1  B. V1/T1=V2/T2  C. V1/T2=V2/T1  D. V1/V2=√P2/√P1

Last Answer : V1/T1=V2/T2

Description : Which of the following is the Ideal gas law (equation)?  A. V/T = K  B. V= k*(1/P)  C. P1/T1 = P2/T2  D. PV = nRT

Last Answer : PV = nRT

Description : Efficiency of a Carnot engine working between temperatures T1 and T2(T1 < T) is (A) (T2- T1)/T2 (B) (T2- T1)/T1 (C) (T1- T2)/T2 (D) (T1- T2)/T1

Last Answer : (A) (T2- T1)/T2

Description : The efficiency of a Carnot engine depends on  (a) working substance  (b) design of engine  (c) size of engine  (d) type of fuel fired  (e) temperatures of source and sink.

Last Answer : Answer : e

Description : What is the highest efficiency of heat engine operating between the two thermal energy reservoirs at temperature limits?  A. Ericson efficiency  B. Otto efficiency  C. Carnot efficiency  D. Stirling efficiency

Last Answer : Carnot efficiency

Description : Which of the following represents the perpetual motion of the first kind  (a) engine with 100% thermal efficiency  (b) a fully reversible engine  (c) transfer of heat energy from low ... its own energy  (e) production of energy by temperature differential in sea water at different levels.

Last Answer : Answer : d

Description : The efficiency of Carnot cycle is maximum for  (a) gas engine  (b) well lubricated engine  (c) petrol engine  (d) steam engine  (e) reversible engine.

Last Answer : Answer : e

Description : Carnot cycle has maximum efficiency for  (a) reversible engine  (b) irreversible engine  (c) new engine  (d) petrol engine  (e) diesel engine.

Last Answer : Answer : a

Description : What is the value of maximum COP in case of absorption refrigeration, if refrigeration provided is at temperature, TR (where, T1 and T2 are source & surrounding temperatures respectively.)? (A) TR/(T2 - TR) (T1 - T2 )/T1 (B) TR ... T1 /(T1 - T2 ) (C) TR/(T1 - TR) (T1 - T2 )/T1 (D) None of these

Last Answer : (A) TR/(T2 - TR) × (T1 - T2 )/T1

Description : What states that thermal efficiencies of all reversible heat engines operating between the same two reservoirs are the same and that no heat engine is more efficient than a reversible one operating between the ... A. Ericson principle  B. Carnot principle  C. Otto principle  D. Stirling principle

Last Answer : Carnot principle

Description : Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle  A. combustion is at constant volume  B. expansion and compression are isentropic  C. maximum temperature is higher  D. heat rejection is lower

Last Answer : Answer: D

Description : What predicts the approximate molar specific heat at high temperatures from the atomic weight?  A. Third law of thermodynamics  B. Law of Dulong and Petit  C. Mollier diagram  D. Pressure-enthalpy diagram

Last Answer : Law of Dulong and Petit

Description : Which law states that the specific heat of a gas remains constant at all temperatures and pressures  (a) Charles’ Law  (b) Joule’s Law  (c) Regnault’s Law  (d) Boyle’s Law  (e) there is no such law.

Last Answer : Answer : c

Description : Ten cu ft. of air at 300 psia 400°F is cooled to 140°F at constant volume. What is the final pressure? (formula: p2 = p1T2/T1)  a. 0  b. 209 psia  c. - 420 psia  d. None of the above

Last Answer : 209 psia

Description : A certain gas, with cp = 0.529Btu/ lb. °Rand R = 96.2ft.lb/lb. °R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5psia. Compute for T2.  a.1520°R  b. 1620°R  c. 1720°R  d. 1820°R formula: T2= T1V2/V1

Last Answer : 1620°R

Description : A certain gas, with cp = 0.529Btu/lb.°R and R = 96.2 ft.lb/lb.°R, expands from 5 cu ft and 80°F to 15 cu ft while the pressure remains constant at 15.5 psia. Compute for T2. (Formula: T2= T1V2/V1)  a. 460°R  b. 270°R  c. 1620 °R  d. None of the above

Last Answer : 1620 °R

Description : A simple steam engine receives steam from the boiler at 180˚C and exhausts directly into the air at 100˚C. What is the upper limit of its efficiency?  a. 11.28 %  b. 36.77 %  c. 20.36 %  d. 17.66 %

Last Answer : 17.66 %

Description : An actual engine is to be designed having same efficiency as the Carnot cycle. Such a proposition is  (a) feasible  (b) impossible  (c) possible  (d) possible, but with lot of sophistications  (e) desirable.

Last Answer : Answer : d

Description : Carnot cycle efficiency depends upon  (a) properties of the medium/substance used  (b) condition of engine  (c) working condition  (d) temperature range of operation  (e) effectiveness of insulating material around the engine.

Last Answer : Answer : d

Description : The more effective way of increasing efficiency of Carnot engine is to  (a) increase higher temperature  (b) decrease higher temperature  (c) increase lower temperature  (d) decrease lower temperature  (e) keep lower temperature constant.

Last Answer : Answer : d

Description : The ratio of equilibrium constants (Kp2/Kp1) at two different temperatures is given by (A) (R/∆H) (1/T1- 1/T2) (B) (∆H/R) (1/T1- 1/T2) (C) (∆H/R) (1/T2- 1/T1) (D) (1/R) (1/T1- 1/T2)

Last Answer : (B) (∆H/R) (1/T1- 1/T2)

Description : The equilibrium constant for a chemical reaction at two different temperatures is given by (A) Kp2/Kp1 = - (∆H/R) (1/T2- 1/T1) (B) Kp2/Kp1 = (∆H/R) (1/T2- 1/T1) (C) Kp2/Kp1 = ∆H (1/T2- 1/T1) (D) Kp2/Kp1 = - (1/R) (1/T2- 1/T1)

Last Answer : (A) Kp2/Kp1 = - (∆H/R) (1/T2- 1/T1)

Description : Co-efficient of performance for a reversed Carnot cycle working between temperatures T1 and T2(T1 > T2) is (A) T2/(T1- T2) (B) T1/(T1- T2) (C) (T1- T2)/T1 (D) (T1- T2)/T2

Last Answer : (A) T2/(T1- T2)

Description : The most efficient heat engine that can operate between two temperature reservoirs T1 and T2 is: w) jet engine x) internal combustion engine y) Carnot engine (pron: car-no) z) steam engine

Last Answer : ANSWER: Y -- CARNOT ENGINE

Description : What refers to the amount of heat removed from the cooled space in BTS’s for 1 watt-hour of electricity consumed?  A. Cost efficiency rating  B. Energy efficiency rating  C. Coefficient of performance  D. Cost of performance

Last Answer : Energy efficiency rating

Description : What is the ratio of the useful heat extracted to heating value?  A. Combustion efficiency  B. Phase efficiency  C. Heat efficiency  D. Work efficiency

Last Answer : Combustion efficiency

Description : Thermal efficiency is the ratio of:  A. Network input to total heat input  B. Network output to total heat output  C. Network output to total heat input  D. Network input to total heat output

Last Answer : Network output to total heat input

Description : For same compression ratio and for same heat added  (a) Otto cycle is more efficient than Diesel cycle  (b) Diesel cycle is more efficient than Otto cycle  (c) efficiency depends on other factors  (d) both Otto and Diesel cycles are equally efficient  (e) none of the above.

Last Answer : Answer : a

Description : Which of the following cycles has maximum efficiency  (a) Rankine  (b) Stirling  (c) Carnot  (d) Brayton  (e) Joule.

Last Answer : Answer : c

Description : Carnot cycle efficiency is maximum when  (a) initial temperature is 0°K  (b) final temperature is 0°K  (c) difference between initial and final temperature is 0°K  (d) final temperature is 0°C  (e) initial temperature is minimum possible.

Last Answer : Answer : b

Description : At same temperatures, the radiation emitted by all real surfaces is ______ the radiation emitted by a black body.  A. Less than  B. Greater than  C. Equal to  D. Either less than or greater than

Last Answer : Less than

Description : The temperatures of the ideal gas temperature scale are measured by using a ______.  A. Constant-volume gas thermometer  B. Constant-mass gas thermometer  C. Constant-temperature gas thermometer  D. Constant-pressure gas thermometer

Last Answer : Constant-volume gas thermometer

Description : What law states that it is impossible to operate an engine operating in a cycle that will have no other effect than to extract heat from a reservoir and turn it into an equivalent amount of work? ...  B. First law of thermodynamics  C. Second law of thermodynamics  D. Third law of thermodynamics

Last Answer : Second law of thermodynamics

Description : Which of the following thermodynamic devices operates the reverse of the heat engine?  a. Thermal pump  b. Thermal evaporator  c. Thermal condenser  d. Thermal equilibrant

Last Answer : Thermal pump

Description : Is a thermodynamic system that operates continuously with only energy (heat and work) crossing its boundaries?  a. Heat Engine  b. Heat Reservoir  c. Heat Source  d. Heat Sink

Last Answer : Heat Engine