For the same draw down in two observations wells at distances r1 and r2, the times after start of 

pumping are t1 and t2 hours respectively. The relation which holds good is 

(A) t2 = r2/r1 × t1

(B) t2 = (r2/r1)² × t1

(C) t2 = (r2/r1)3

 × t1

(D) t2 = (r2/r1) × t1

2

1 Answer

Answer :

(B) t2 = (r2/r1)² × t1

Related questions

Description : S1 and S2 are the draw downs in an observation well at times t1 and t2 after pumping. For  discharge Q and coefficient of transmissibility T, the relationship, is  (A) S2 - S1 = (2.3Q/ ) log10 (t2/t1)  (B) S2 - S1 ... - S1 = (2.3Q/4 ) loge (t2/t1)  (D) S2 - S1 = (2.3Q/4 ) loge (t1/t2

Last Answer : (B) S2 - S1 = (2.3Q/4 ) log10 (t2/t1) 

Description : In an artesian aquifer, the draw downs in two observation wells at distances 100 m, and 200 m  were found same after one hour and x hours respectively. The value of x, is  (A) 2 hours  (B) 4 hours  (C) 9 hours  (D) 16 hours 

Last Answer : (B) 4 hours

Description : When a constant discharge 2.91 litres/sec. was obtained in a pumping test, the draw downs in the test wells at 3 m and 6.184 m were 2.6 m and 0.3 m respectively. If over-all depth of the pumping well was 16 m, the ... (A) 0.0005 cm/sec (B) 0.001 cm/sec (C) 0.002 cm/sec (D) 0.01 cm/sec

Last Answer : Answer: Option B

Description : The coefficients of permeability of soils of an unconfined aquifer and another confined aquifer were determined by pumping water from the wells and observing the effect of water table in two test wells at equal distances was found to be equal. ... (B) H = h1 - h2 (C) H = h2 + h1 (D) ½ (h1 + h2)

Last Answer : Answer: Option D

Description : The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2 (when, T1 > T2) is given by (T1- T2)/T1. The co efficient of performance (C.O.P.) of a Carnot heat pump operating between T1 and T2is given by (A) T1/(T1-T2) (B) T2/(T1-T2) (C) T1/T2 (D) T2/R1

Last Answer : (A) T1/(T1-T2)

Description : Let the time taken to switch between user mode and kernel mode of execution be T1 while time taken to switch between two user processes be T2. Which of the following is correct? (A) T1 < T2 (B) T1 > T2 (C) T1 = T2 (D) Nothing can be said about the relation between T1 and T2.

Last Answer : (A) T1 < T2

Description : Let R be a relation defined on the set A of all triangles such that R = {(T1, T2) : T1 is similar to T2}. Then R is -Maths 9th

Last Answer : (d) An equivalence relation.Every triangle is similar to itself, so (T1, T1) ∈ R ⇒ R is reflexive. (T1, T2) ∈ R ⇒ T1 ~ T2 ⇒T2 ~ T1, ⇒ (T2, T1) ∈ R ⇒ R is symmetrictransitive. ∴ R is an equivalence relation.

Description : What is the value of maximum COP in case of absorption refrigeration, if refrigeration provided is at temperature, TR (where, T1 and T2 are source & surrounding temperatures respectively.)? (A) TR/(T2 - TR) (T1 - T2 )/T1 (B) TR ... T1 /(T1 - T2 ) (C) TR/(T1 - TR) (T1 - T2 )/T1 (D) None of these

Last Answer : (A) TR/(T2 - TR) × (T1 - T2 )/T1

Description : Let x1(t) and x2(t) be periodic with fundamental periods T1 and T2 respectively. Under what condition be the sum x(t) = x1(t) + x2(t) be periodic ? (A) Only for T1 = T2 (B) Always periodic (C) For T1/T2 equal to a rational number (D) Not periodic

Last Answer : Let x1(t) and x2(t) be periodic with fundamental periods T1 and T2 respectively. Under what condition be the sum x(t) = x1(t) + x2(t) be periodic ? (A) Only for T1 = T2 (B) Always periodic (C) For T1/T2 equal to a rational number (D) Not periodic

Description : Let pk(R) denotes primary key of relation R. A many-to-one relationship that exists between two relations R1 and R2 can be expressed as follows: (1) pk(R2)→pk(R1) (2) pk(R1)→pk(R2) (3) pk(R2)→R1∩R2 (4) pk(R1)→R1∩R2

Last Answer : Answer: 2

Description : _____ produces the relation that has attributes of R1 and R2 (A) Cartesian product (B) Difference (C) Intersection (D) Product

Last Answer : A) Cartesian product

Description : The relation schemas R1 and R2 form a Lossless join decomposition of R if and only if: (a) R1⋂R2→(R1-R2) (b) R1→R2 (c) R1⋂R2→(R2-R1) (d) R2→R1⋂R2 (A) (a) and (b) happens (B) (a) and (d) happens (C) (a) and (c) happens (D) (b) and (c) happens

Last Answer : (C) (a) and (c) happens 

Description : If f1 and f2 are the distances from the optical centre of a convex lens of focal length to conjugate two points P1 and P2 respectively, the following relationship holds good (A) f = f1 + f2 (B) f = ½ (f1 + f2) (C) 1/f = 1/f1 + 1/f2 (D) None of these

Last Answer : (C) 1/f = 1/f1 + 1/f2

Description : Let R1 and R2 be the remainders when the polynomials x^3 + 2x^2 – 5ax – 7 and x^2 + ax^2 – 12x + 6 are divided by (x + 1) and (x – 2) respectively. -Maths 9th

Last Answer : answer:

Description : Critical Speed (Nc ) of a ball mill is given by (where R1 and R2 are radii of ball mill and the ball respectively). (A) Nc = (1/4π). √(g/R1 - R2 ) (B) Nc = (1/2π). √(g/R1 - R2 ) (C) Nc = (1/π). √(g/R1 - R2 ) (D) Nc = (1/2π). √(R1 - R2 /g)

Last Answer : (B) Nc = (1/2π). √(g/R1 - R2 )

Description : Pick up the correct statement from the following:  (A) Mcg = M M 2  + r2 ) where letters carry their usual meanings  (B) Tcp = m 2  + T2 )where ... maximum shear stress caused by the combined bending and torsion, is called equivalent  torque  (D) All the above 

Last Answer : (D) All the above 

Description : Pick up the correct statement from the following: (A) Air lift pumps are generally used for pumping water from deep wells (B) Jet pumps are generally used for pumping water from small wells (C) The hydraulic ram works on the principle of water hammer (D) All the above

Last Answer : (D) All the above

Description : While determining the yield of open wells by the pumping test  (A) Velocity of recharging water, increases with depression head  (B) Depression head resulting at critical velocity, is called critical ... (D) Maximum safe yield of an open well, is expected at critical depression head 

Last Answer : (D) Maximum safe yield of an open well, is expected at critical depression head 

Description : The surface joining the static levels in several non-pumping wells penetrating a continuous confined aquifer represents (a) Water-table surface (b) Capillary fringe (c) Piezometric surface of the aquifer (d) Physical top surface of the aquifer

Last Answer : (c) Piezometric surface of the aquifer

Description : Derivation of Thiem's formula Q = 2 (s1 - s2)/2.3 log10 (r2/r1) is based on the assumption  (A) The aquifer is homogeneous, isotropic and of infinite depth and area  (B) The well is sunk ... (C) The flow lines are radial and horizontal, and the flow is laminar  (D) All the above 

Last Answer : (D) All the above 

Description : Horizontal distances obtained by thermometric observations (A) Require slope correction (B) Require tension correction (C) Require slope and tension corrections (D) Do not require slope and tension corrections

Last Answer : (D) Do not require slope and tension corrections

Description : Heat transfer by radiation between two bodies at T1 & T2 and in an ambient temperature of Ta °C depends on (A) T1 - T2 (B) T1 - Ta (C) T2 - Ta (D) None of these

Last Answer : (D) None of these

Description : The ratio of equilibrium constants (Kp2/Kp1) at two different temperatures is given by (A) (R/∆H) (1/T1- 1/T2) (B) (∆H/R) (1/T1- 1/T2) (C) (∆H/R) (1/T2- 1/T1) (D) (1/R) (1/T1- 1/T2)

Last Answer : (B) (∆H/R) (1/T1- 1/T2)

Description : The equilibrium constant for a chemical reaction at two different temperatures is given by (A) Kp2/Kp1 = - (∆H/R) (1/T2- 1/T1) (B) Kp2/Kp1 = (∆H/R) (1/T2- 1/T1) (C) Kp2/Kp1 = ∆H (1/T2- 1/T1) (D) Kp2/Kp1 = - (1/R) (1/T2- 1/T1)

Last Answer : (A) Kp2/Kp1 = - (∆H/R) (1/T2- 1/T1)

Description : For heat engine operating between two temperatures (T1>T2), what is the maximum efficiency attainable?  A. Eff = 1 – (T2/T1)  B. Eff = 1 - (T1/T2)  C. Eff = T1 - T2  D. Eff = 1 - (T2/T1)^2

Last Answer : Eff = 1 – (T2/T1)

Description : -For two shafts in parallel or for two concentric shafts a. T = T1 + T2 b. T = T1 = T2 c. T = T1 – T2 d. T = (T1.T2)^1/2

Last Answer : a. T = T1 + T2

Description : For two shafts in series or having different diameters for two parts of length a. T = T1 + T2 b. T = T1 = T2 c. T = T1 – T2 d. T = (T1.T2)^1/2

Last Answer : b. T = T1 = T2

Description : The most efficient heat engine that can operate between two temperature reservoirs T1 and T2 is: w) jet engine x) internal combustion engine y) Carnot engine (pron: car-no) z) steam engine

Last Answer : ANSWER: Y -- CARNOT ENGINE

Description : Why does CSF appears to be dark in T1 and white in T2?

Last Answer : I think that it is because the two types of MRI detirmine to color differently. T1 determines color based on spin-lattice relaxation time, while T2 determine color based on spin-spin relation time. Both ... dark. Since cerebrospinal fluid is mostly water, it shows up dark in T1 and light in T2.

Description : What is the difference between T1 and T2 mri scans?

Last Answer : Wikipedia has some stuff to get you going: http://en.wikipedia.org/wiki/MRI#Basic_MRI_scans

Description : If w is the angular velocity of the pulley and T1 and T2 are tensions of driving and driven side then power transmitted equals a.(T1 + T2) w b.(T1 + 2T2) w c.107 dynes d.(T1 - T2) w e.wT1

Last Answer : d. (T1 - T2) w

Description : What digital carrier transmits a digital signal at 274.176 Mbps? A. T1 B. T3 C. T2 D. T4

Last Answer : D. T4

Description : What carrier system multiplexes 96 voice band channels into a single 6.312 Mbps data signal? A. T1 carrier system B. T2 carrier system C. T1C carrier system D. T3 carrier system

Last Answer : B. T2 carrier system

Description : A digital carrier facility used to transmit a DSI-formatted signal at 1.544. Mbps. A. T2 B. T1 C. T4 D. T3

Last Answer : B. T1

Description : A Term is either an individual constant (a 0-ary function), or a variable, or an n-ary function applied to n terms: F(t1 t2 ..tn). a) True b) False

Last Answer : a) True

Description : Bamboo plant is growing in a fir forest then what will be the trophic level of it? (a) First trophic level (T1) (b) Second trophic level (T2) (c) Third trophic level (T3) (d) Fourth trophic level (T4)

Last Answer : a) First trophic level (T1)

Description : Which of the following high-speed circuits is the fastest? A) T1 B) T2 C) T3 D) DS3

Last Answer : DS3

Description : The expression, nCv(T2- T1), is for the __________ of an ideal gas. (A) Work done under adiabatic condition (B) Co-efficient of thermal expansion (C) Compressibility (D) None of these

Last Answer : (A) Work done under adiabatic condition

Description : The expression for entropy change, ΔS = n Cp. ln (T2/T1), is valid for the __________ of a substance. (A) Simultaneous pressure & temperature change (B) Heating (C) Cooling (D) Both (B) and (C)

Last Answer : (D) Both (B) and (C)

Description : Co-efficient of performance for a reversed Carnot cycle working between temperatures T1 and T2(T1 > T2) is (A) T2/(T1- T2) (B) T1/(T1- T2) (C) (T1- T2)/T1 (D) (T1- T2)/T2

Last Answer : (A) T2/(T1- T2)

Description : To obtain integrated form of Clausius-Clapeyron equation, ln (P2/P1) = (∆HV/R) (1/T1- 1/T2) from the exact Clapeyron equation, it is assumed that the (A) Volume of the liquid phase is negligible compared to ... gas (C) Heat of vaporisation is independent of temperature (D) All (A), (B) & (C)

Last Answer : (D) All (A), (B) & (C)

Description : The expression for entropy change given by, ΔS = nR ln (V2/V1) + nCvln (T2/T1) is valid for (A) Reversible isothermal volume change (B) Heating of a substance (C) Cooling of a substance (D) Simultaneous heating and expansion of an ideal gas

Last Answer : (D) Simultaneous heating and expansion of an ideal gas

Description : Efficiency of a Carnot engine working between temperatures T1 and T2(T1 < T) is (A) (T2- T1)/T2 (B) (T2- T1)/T1 (C) (T1- T2)/T2 (D) (T1- T2)/T1

Last Answer : (A) (T2- T1)/T2

Description : The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2(when, T1 > T2) is given by (T1- T2)/T1. The co efficient of performance (CO.P.) of a Carnot heat pump operating between T1 and T2is given by (A) T1/(T1-T2) (B) T2/(T1-T2) (C) T1/T2 (D) T2/T1

Last Answer : (B) T2/(T1-T2)

Description : Assuming compression is according to the Law PV = C, Calculate the initial volume of the gas at a pressure of 2 bars w/c will occupy a volume of 6m³ when it is compressed to a pressure of 42 Bars.  a) 130m³  b) 136m³  c) 120m³  d) 126m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 126m³

Description : The pressure gauge on a 2000 m³ tank of oxygen gas reads 600 kPa. How much volumes will the oxygen occupied at pressure of the outside air 100 kPa?  a) 14026.5 m³  b) 15026.5 m³  c) 13026.5 m³  d) 16026.5 m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 14026.5 m³

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : Ten cu. ft of air at 300psia and 400°F is cooled to 140°F at constant volume. What is the transferred heat?  a.-120Btu  b. -220Btu  c.-320Btu  d. -420Btu formula: Q= mcv(T2-T1)

Last Answer : -420Btu

Description : A gas having a volume of100 ft³ at 27ºC is expanded to 120 ft³by heated at constant pressure to what temperature has it been heated to have this new volume?  a. 87°C  b. 85°C  c. 76°C  d. 97°C t2= T2–T1

Last Answer : 87°C