The stiffness factor for a prismatic beam of length L and moment of inertia I, is 

(A) IE/L

(B) 2EI/L

(C) 3EI/L

(D) 4EI/L

1 Answer

Answer :

(A) IE/L

Related questions

Description : Maximum deflection of a cantilever due to pure bending moment M at its free end, is (A) ML²/3EI (B) ML²/4EI (C) ML²/6EI (D) ML²/2EI

Last Answer : (D) ML²/2EI

Description : A cantilever of length is subjected to a bending moment at its free end. If EI is the flexural  rigidity of the section, the deflection of the free end, is  (A) ML/EI (B) ML/2EI (C) ML²/2EI (D) ML²/3EI

Last Answer : (D) ML²/3EI

Description : The maximum deflection due to a load W at the free end of a cantilever of length L and having  flexural rigidity EI, is  (A) WL²/2EI (B) WL²/3EI (C) WL3 /2EI (D) WL3 /3EI

Last Answer : (D) WL3 /3EI

Description : Maximum slope in a cantilever beam with W at the free end will be a.WL2/4EI b.WL2/8EI c.WL2/2EI d.None.

Last Answer : c.WL2/2EI

Description : Maximum deflection in a cantilever beam with W at the free end will be a.WL3/6EI. b.WL3/2EI c.WL3/3EI d.None.

Last Answer : c.WL3/3EI

Description : Differences in deflections between two points A and B by the moment area method is given by a.(Area of BMD diagram between A and B ).XB/2EI. b.(Area of BMD diagram between A and B).XB/3EI c.(Area of BMD diagram between A and B) .XB/EI d.None.

Last Answer : c.(Area of BMD diagram between A and B) .XB/EI

Description : .Differences in slopes between two points A and B by the moment area method is given by a.Area of BMD diagram between A and B /2EI. b.Area of BMD diagram between A and B /3EI. C.Area of BMD diagram between A and B /EI d.None.

Last Answer : C.Area of BMD diagram between A and B /EI

Description : The energy stored in a beam of length subjected to a constant B.M. is  (A) M²L/2EI (B) ML²/2EI (C) M²L/EI (D) ML²/EI

Last Answer : (A) M²L/2E

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a.wL4/4EI b.wL4/12EI C.wl4/ 8EI d.None.

Last Answer : C.wl4/ 8EI

Description : The deflection due to couple M at the free end of a cantilever length L is  (A) ML/EI (B) 2ML/EI (C) ML²/2E (D) M²L/2EI

Last Answer : (C) ML²/2EI

Description : While using three moments equation, a fixed end of a continuous beam is replaced by an additional span of (A) Zero length (B) Infinite length (C) Zero moment of inertia (D) None of the above

Last Answer : (A) Zero length

Description : The maximum deflection due to a uniformly distributed load w/unit length over entire span of a  cantilever of length l and of flexural rigidly EI, is  (A) wl3 /3EI (B) wl4 /3EI (C) wl4 /8EI (D) wl4 /12E

Last Answer : (C) wl4 /8EI

Description : Deflection underthe load in a S.S beam with W not at the centre will be a.4Wa2b2/ 3EI l . b.2Wa2b2/3EIl. c.Wa2 b2/ 3EIL. d.None.

Last Answer : c.Wa2 b2/ 3EIL.

Description : Euler's formula states that the buckling load for a column of length , both ends hinged and whose least moment of inertia and modulus of elasticity of the material of the column are and respectively, is given by the relation (A) P = ²EI/l² (B) P = /EI (C) P = /l² (D) P = ²EI/l

Last Answer : (A) P = ²EI/l²

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. wl3/9EI b. wl3/6EI c. wl3/3EI d. None.

Last Answer : b. wl3/6EI

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : A hollow prismatic beam of circular section is subjected to a torsional moment. The maximum shear stress occurs at (a) inner wall of cross section (b) middle of thickness (c) outer surface of shaft (d) none of these

Last Answer : (c) outer surface of shaft

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : A beam of length L is pinned at both ends and is subjected to a concentrated bending couple of  moment M at its centre. The maximum bending moment in the beam is  (A) M (B) M/2  (C) M/3  (D) ML/2 

Last Answer : (A) M

Description : At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of  the section by  (A) Depth of the section  (B) Depth of the neutral axis  (C) Maximum tensile stress at the section  (D) Maximum compressive stress at the section

Last Answer : (B) Depth of the neutral axis 

Description : A 8 metre long simply supported rectangular beam which carries a distributed load 45 kg/m. experiences a maximum fibre stress 160 kg/cm2 . If the moment of inertia of the beam is 640 cm4 , the overall depth of the beam is (A) 10 cm (B) 12 cm (C) 15 cm (D) 18 cm

Last Answer : (A) 10 cm

Description : The three moments equation is applicable only when (A) The beam is prismatic (B) There is no settlement of supports (C) There is no discontinuity such as hinges within the span (D) The spans are equal

Last Answer : (C) There is no discontinuity such as hinges within the span

Description : Increasing which of the following factor would result in increase of free torsional vibration? A. Radius of gyration B. Mass moment of inertia C. Polar moment of inertia D. Length

Last Answer : C. Polar moment of inertia

Description : Increasing which of the following factor would result in increase of free torsional vibration? a) Radius of gyration b) Mass moment of inertiac) Polar moment of inertia d) Length

Last Answer : c) Polar moment of inertia

Description : Pick up the incorrect statement from the following: The torsional resistance of a shaft is directly  proportional to  (A) Modulus of rigidity  (B) Angle of twist  (C) Reciprocal of the length of the shaft  (D) Moment of inertia of the shaft section 

Last Answer : (D) Moment of inertia of the shaft section 

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : A simply supported beam carries two equal concentrated loads W at distances L/3 from either support. The maximum bending moment (A) WL/3 (B) WL/4 (C) 5WL/4 (D) 3WL/12

Last Answer : (A) WL/3

Description : A simply supported beam of span L carries a concentrated load W at its mid-span. The maximum  bending moment M is  (A) WL/2  (B) WL/4  (C) WL/8  (D) WL/12

Last Answer : (B) WL/4

Description : The carryover factor in a prismatic member whose far end is fixed is (A) 0 (B) 1/2 (C) 3/4 (D) 1

Last Answer : (B) 1/2

Description : The ratio of elongations of a conical bar due to its own weight and that of a prismatic bar of the  same length, is  (A) 1/2  (B) 1/3  (C) 1/4  (D) 1/5

Last Answer : (B) 1/3 

Description : Calculate the Polar moment of inertia in m 4 of a single motor system from the following data: C = 8 GN/m 2 , L=9m, I = 600 Kg-m 2 , f=10 Hz a) 0.00027b) 0.00032 c) 0.00045 d) 0.00078

Last Answer : a) 0.00027

Description : For normal cases, stiffness of a simply supported beam is satisfied if the ratio of its span to its overall depth does not exceed (A) 10 (B) 15 (C) 20 (D) 25

Last Answer : Answer: Option C

Description : If the ratio of the span to the overall depth does not exceed 10, the stiffness of the beam will ordinarily be satisfactory in case of a (A) Simply supported beam (B) Continuous beam (C) Cantilever beam (D) None of these

Last Answer : Answer: Option C

Description : The maximum bending moment for a simply supported beam with a uniformly distributed  load w/unit length, is  (A) WI/2  (B) WI²/4  (C) WI²/8  (D) WI²/12

Last Answer : (C) WI²/8 

Description : The shape of the bending moment diagram over the length of a beam, having no external load, is always (A) Linear (B) Parabolic (C) Cubical (D) Circular

Last Answer : (A) Linear

Description : The shape of the bending moment diagram over the length of a beam, carrying a uniformly  distributed load is always  (A) Linear  (B) Parabolic  (C) Cubical  (D) Circular

Last Answer : (B) Parabolic 

Description : The shape of the bending moment diagram over the length of a beam, carrying a uniformly  increasing load, is always  (A) Linear  (B) Parabolic  (C) Cubical  (D) Circular 

Last Answer : (C) Cubical 

Description : If a constant section beam is subjected to a uniform bending moment throughout, its length bends  to  (A) A circular arc  (B) A parabolic arc  (C) A catenary  (D) None of these 

Last Answer : (A) A circular arc 

Description : In case of a simply supported rectangular beam of span L and loaded with a central load W, the  length of elasto-plastic zone of the plastic hinge, is  (A) L/2  (B) L/3  (C) L/4  (D) L/5 

Last Answer : (B) L/3 

Description : The horizontal deflection of a parabolic curved beam of span 10 m and rise 3 m when loaded with  a uniformly distributed load l t per horizontal length is (where Ic  is the M.I. at the crown, which  varies as the slope ... arch).  (A) 50/EIc (B) 100/EIc (C) 150/EIc (D) 200/E

Last Answer : (D) 200/E

Description : The general expression for the B.M. of a beam of length l is the beam carries M = (wl/2) x - (wx²/2)  (A) A uniformly distributed load w/unit length  (B) A load varying linearly from zero at one end to w at the other end  (C) An isolated load at mid span  (D) None of these 

Last Answer : (A) A uniformly distributed load w/unit length 

Description : In case of a simply supported I-section beam of span L and loaded with a central load W, the  length of elasto-plastic zone of the plastic hinge, is  (A) L/2  (B) L/3  (C) L/4  (D) L/5 

Last Answer : (D) L/5 

Description : The maximum deflection of a simply supported beam of length L with a central load W, is (A) WL²/48EI (B) W²L/24EI (C) WL3 /48EI (D) WL²/8EI

Last Answer : (C) WL3 /48EI

Description : The width of a beam of uniform strength having a constant depth d length L, simply supported at the ends with a central load W is (A) 2WL/3fd² (B) 3WL/2fd² (C) 2fL/3Wd 4 (D) 3fL²/2Wd

Last Answer : (B) 3WL/2fd²

Description : In a simply supported beam (l + 2a) with equal overhangs (a) and carrying a uniformly distributed load over its entire length, B.M. at the middle point of the beam will be zero if (A) l = 2a (B) l = 4a (C) l < 2a (D) l > a

Last Answer : (A) l = 2a

Description : A simply supported beam (l + 2a) with equal overhangs (a) carries a uniformly distributed load  over the whole length, the B.M. changes sign if  (A) l > 2a (B) l < 2a (C) l = 2a (D) l = 4a

Last Answer : (A) l > 2a

Description : A beam of length L supported on two intermediate rollers carries a uniformly distributed load on its entire length. If sagging B.M. and hogging B.M. of the beam are equal, the length of each overhang, is (A) 0.107 L (B) 0.207 L (C) 0.307 L(D) 0.407 L

Last Answer : (B) 0.207 L

Description : If the maximum dip of a parabolic tendon carrying tension P is h and the effective length of the pre-stressed beam is L, the upward uniform pressure will be (A) 8hp/l (B) 8hp/l² (C) 8hl/p (D) 8hl/p²

Last Answer : Answer: Option B

Description : If N is the algebraic difference of grades, S is the head light beam distance in metres, the length (L) of a valley curve, is (A) NS²/4 (B) NS²/6 (C) NS²/9.6 (D) NS²/4.8

Last Answer : Answer: Option A

Description : The total length of a cranked bar through a distance (d) at 45° in case of a beam of effective length L, is (A) L + 0.42 d (B) L + (2 × 0.42 d) (C) L - (0.42 d) (D) L - (2 × 0.4 d)

Last Answer : (B) L + (2 × 0.42 d)