A gas (density = 1.5 kg/m3
, viscosity = 2 × 10
‒5 kg/m.s) flowing through
a packed bed (particle size = 0.5 cm, porosity = 0.5) at a superficial velocity
of 2 m/s causes a pressure drop of 8400 Pa/m. The pressure drop for another
gas, with density of 1.5 kg/m3and viscosity of 3 × 10
‒5kg/m.s flowing at 3 m/s
will be
(A) 8400 Pa/m
(B) 12600 Pa/m
(C) 18900 Pa/m
(D) 16800 Pa/m

1 Answer

Answer :

(B) 12600 Pa/m

Related questions

Description : A bed of spherical particles (specific gravity 2.5) of uniform size 1500 μm is 0.5 m in diameter and 0.5 m high. In packed bed state, the porosity may be taken as 0.4. Ergun's equation for the above fluid-particle ... fluidisation velocity, VOM is (A) 12 mm/s (B) 16 mm/s (C) 24 mm/s (D) 28 mm/s

Last Answer : (B) 16 mm/s

Description : Bed pressure drop in an air fluidised bed of catalyst particles (ρp = 200 kg/m3, Dp = 0.05 cm) of 60 cm bed depth and bed porosity of 0.5 expressed in cm of water (manometer) is (A) 90 (B) 60 (C) 45 (D) 30

Last Answer : (B) 60

Description : A bed consists of particles of density 2000 kg/m3 . If the height of the bed is 1.5 metres and its porosity 0.6, the pressure drop required to fluidise the bed by air is (A) 25.61 kPa (B) 11.77 kPa (C) 14.86 kPa (D) 21.13 kPa

Last Answer : (B) 11.77 kPa

Description : For liquid flow through a packed bed, the superficial velocity as compared to average velocity through the channel in the bed is (A) More (B) Less (C) Equal (D) Independent of porosity

Last Answer : (B) Less

Description : For flow of fluids through packed bed, the superficial velocity is (A) Less than the average velocity through channels (B) More than the average velocity through channels (C) Dependent on the pressure drop across the bed (D) Same as the average velocity through channels

Last Answer : (A) Less than the average velocity through channels

Description : A bed of spherical particles (specific gravity 2.5) of uniform size 1500 μm is 0.5 m in diameter and 0.5 m high. In packed bed state, the porosity may be taken as 0.4. Ergun's equation for the above fluid-particle system ... What is the porosity of the fluidised bed? (A) 0.2 (B) 0.5 (C) 0.7 (D) 0.8

Last Answer : (C) 0.7

Description : . A 0.5 m high bed made up of a 1 mm dia glass sphere (density 2500 kg/m3 ) is to be fluidised by water (density 1000 kg/m3 ). If at the point of incipient fluidisation, the bed voidage is 40%, the pressure drop across the bed is (A) 4.4 KPa (B) 2.94 KPa (C) 3.7 KPa (D) None of these

Last Answer : (A) 4.4 KPa

Description : he pressure drop per unit length of pipe incurred by a fluid 'X' flowing through pipe is Δp. If another fluid 'Y' having both the specific gravity & density just double of that of fluid 'X', flows through the same pipe ... then the pressure drop in this case will be (A) Δp (B) 2Δp (C) Δp 2 (D) Δp/2

Last Answer : (B) 2Δp

Description : The capacity of a classifier in 'tons of solid/hr' is given by (where, A = cross-sectional area in m2 , V = rising velocity of fluid in m/sec, S = percentage of solids in the suspension by volume, ρ = density of solids in kg/m3 ) (A) 3.6 AVS.ρ (B) 3.6 A.V.ρ (C) 3.6 A.S. ρ (D) 3.6 AVS/ρ

Last Answer : (A) 3.6 AVS.ρ

Description : Reynolds number for water flow through a tube of I.D. 5 cm is 1500. If a liquid of 5 centipoise viscosity and 0.8 specific gravity flows in the same pipe at the same velocity, then the pressure drop will (A) Increase (B) Decrease (C) Remain same (D) Data insufficient to predict pressure drop

Last Answer : (A) Increase

Description : Theoretical capacity of crushing rolls in tons/hr is given by (where, V = peripheral velocity, m/sec. W = width of rolls, m Dr = distance between rolls ρ = density of material to be crushed, kg/m3 here, V =πND where, N = speed of the rolls ... V.W.Dr.ρ (B) 3.6 V.W. ρ (C) 3.6 W.Dr.ρ (D) 3.6 V.W.Dr/ρ

Last Answer : (A) 3.6 V.W.Dr.ρ

Description : A Bingham fluid of viscosity μ = 10 Pa.s and yield stress, τ0 = 10 KPa, is shared between flat parallel plates separated by a distance of 10 -3 m. The top plate is moving with a velocity of 1 m/s. The shear stress on the plate is (A) 10 KPa (B) 20 KPa (C) 30 KPa (D) 40 KPa

Last Answer : (B) 20 KPa

Description : Two fluids are flowing through two similar pipes of the same diameter. The Reynold's number is same. For the same flow rate if the viscosity of a fluid is reduced to half the value of the ... (A) Increase (B) Decrease (C) Remain unchanged (D) Data insufficient to predict relative pressure drop

Last Answer : (B) Decrease

Description : Minimum fluidisation velocity for a specific system depends upon the (A) Particle size (B) Fluid viscosity (C) Density of both the particle & the fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : For laminar flow of a fluid through a packed bed of spheres of diameter d, the pressure drop per unit length of bed depends upon the sphere diameter as (A) d (B) d 2 (C) d 4 (D) d

Last Answer : (D) d

Description : Umf is the minimum fluidisation velocity for a bed of particles. An increase in the superficial gas velocity from 2 Umf to 2.5 Umf results in (all velocities are smaller than the entrainment velocity of the particles ... (A) Drag on particles (B) Drag on column walls (C) Bed height (D) Bed voidage

Last Answer : (C) Bed height

Description : Plate towers are preferred to packed towers, when large temperature changes are involved, because of the reason that the (A) Packing may be crushed due to thermal expansion/contraction of the ... C) Viscosity variation of the fluids may cause channelling/flooding (D) None of these

Last Answer : (A) Packing may be crushed due to thermal expansion/contraction of the components of the equipments

Description : With increase in the liquid flow rate at a fixed gas velocity in a randomly packed counter current gas-liquid absorption column, the gas pressure drop (A) Decreases (B) Remains unchanged (C) Increases (D) Decreases exponentially

Last Answer : (C) Increases

Description : is the minimum pressure required for operating a nozzle in desirable condition a) 1 kg/cm b) 1.5kg/cm c) 2 kg/cm d) 2.5kg/cm

Last Answer : 1.5kg/cm

Description : In a dry packed bed, the pressure drop will be changed by increasing the flow rate as (A) V1.8 (B) V-0.8 (C) V (D) V-1

Last Answer : (A) V1.8

Description : Shell side pressure drop in a shell and tube heat exchanger does not depend upon the (A) Baffle spacing & shell diameter (B) Tube diameter & pitch (C) Viscosity, density & mass velocity of shell side fluid (D) None of these

Last Answer : (D) None of these

Description : In a packed bed absorption column, the channelling will be noted by the (A) Increase in flow rate (B) Sharp drop in pressure drop (C) Sharp rise in pressure drop (D) None of these

Last Answer : (B) Sharp drop in pressure drop

Description : Pressure drop in a packed bed for laminar flow is given by the __________ equation. (A) Kozeny-Carman (B) Blake-Plummer (C) Leva's (D) Fanning friction factor

Last Answer : (A) Kozeny-Carman

Description : Pressure drop in packed bed for turbulent flow is given by the __________ equation. (A) Kozeny-Carman (B) Blake-Plummer (C) Leva's (D) Hagen-Poiseuille’s

Last Answer : (B) Blake-Plummer

Description : Pressure drop in a fluidised bed reactor is __________ that in a similar packed bed reactor. (A) Less than (B) Greater than (C) Same as (D) None of these

Last Answer : (B) Greater than

Description : Minimum possible diameter of a packed column is decided mainly bythe (A) Flooding (B) Gas viscosity (C) Liquid density (D) Liquid hold up

Last Answer : (A) Flooding

Description : A 30-m vertical column of fluid (density 1878 kg/m3 ) is located where g= 9.65 mps2 . Find the pressure at the base of the column. (Formula: pg= gρhg/k )  a. 543680 N/m2  b. 543.68 kPa (gauge)  c. Both a & b  d. None of the above

Last Answer : Both a & b

Description : The terminal velocity of a solid spherical particle falling through a stationary fluid mass in the Stoke's law range is proportional to the (A) Inverse of fluid viscosity (B) Square of particle size (C) Difference in the densities of the particle & fluid (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : If the specific gravity of a soil particle of 0.05 cm diameter is 2.67, its terminal velocity while settling in distilled water of viscosity, 0.01 poise, is (A) 0.2200 cm/sec (B) 0.2225 cm/sec (C) 0.2250 cm/sec (D) 0.2275 cm/sec

Last Answer : (D) 0.2275 cm/sec

Description : Mean drift velocity of electron in a copper wire having cross-sectional area 5.0 × 10-6 m2 carrying current of 1 A and having number density 8.5 × 1028 m3 is A. 0.015 mm s-1 B. 0.1 mm s-1 C. 0.5 mm s-1 D. 0.25 mm s-1

Last Answer : 0.015 mm s-1

Description : essure drop (Δp) for a fluid flowing in turbulent flow through a pipe is a function of velocity (V) as (A) V1.8 (B) V-0.2 (C) V2.7 (D) V

Last Answer : (D) V

Description : Utilizing the answer to the previous problem, estimate the overall or average increase in temperature ( ΔT) of the concrete roof from the energy absorbed from the sun during a12hour day. Assume that all of the radiation absorbed goes into ... °C  b. 8.9°C  c. 9.9°C  d. 10.9°C formula: ΔQ = m c ΔT

Last Answer : 7.9 °C

Description : Pick out the correct statement. (A) For identical gas flow rates, less pressure drop occurs through a plate tower than through a packed tower (B) Plate column can handle greater liquid loads without flooding than packed ... duty, plate columns weigh less than packed columns (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : A jet of water of cross-sectional area 20 sq. cm impinges on a plate at an angle of 60? with a velocity of 10 m/sec. Neglecting the friction between the jet and plate (density of water 1000/9.81 kgm-1 sec2 per cubic meter), the ... a.15 - 20 kg b.20 - 25 kg c.5 - 10 kg d.25 - 30 kg e.10 - 15 kg

Last Answer : a. 15 - 20 kg

Description : Bag filter design is predominantly dependent on gas temperature, as it affects the gas density & viscosity and the selection of filtering material. The pressure drop in a bag filter is (A) Inversely proportional to ... the gas (C) Proportional to the pressure of the gas (D) Both (B) and (C)

Last Answer : (D) Both (B) and (C)

Description : Brunauer, Emmet and Teller (BET) equation is used to determine the specific surface area of a porous particle but not the pore volume & the porosity of the catalyst bed. Which of the following postulates ... (except the first one) is involved in each of the evaporation process (D) None of these

Last Answer : (B) There is no dynamic equilibrium between successive layer

Description : For laminar flow of Newtonian fluids through a circular pipe, for a given pressure drop and length & diameter of pipe, the velocity of fluid is proportional to (where, μ = fluid viscosity ) (A) μ (B) 1/μ (C) √μ (D) 1/√μ

Last Answer : (B) 1/μ

Description : Calculate the recoverable waste heat (Q, in kCal/hour) from flue gases using the followingparameters: V (flow rate of the substance) 2000 m3/hr r (density of the flue gas): 0.9 kg/m3 Cp (specific heat ... (temperature difference): 120 oC h (recovery factor): 50% a. 21600 b. 43200 c. 25600 d. 34000

Last Answer : 21600

Description : A particle of specific charge `q//m = (pi) C//kg` is projected from the origin towards positive x-axis with a velocity of `10 m//s` in a uniform magne

Last Answer : A particle of specific charge `q//m = (pi) C//kg` is projected from the origin towards positive x-axis with a ... 5hat(j))m//s` D. `-10hat(j)m//s`

Description : A dash pot consists of a cylinder 10 cm in diameter in which slides a piston 12 cm long having a radial clearance of 1 mm. The cylinder is filled with oil having a viscosity of 1 poise. What will be the resistance offered ... with a velocity of 3 cm/sec a.1090 kg b.100 kg c.10900 kg d.10 kg e.50 kg

Last Answer : c. 10900 kg

Description : Helium-mercury method can be used to determine the __________ of the catalyst particle. (A) Pore volume (B) Solid density (C) Porosity (D) All (A), (B), & (C)

Last Answer : (D) All (A), (B), & (C)

Description : The mass of 2.5 m3 of a certain liquid is 2 tonnes. Its mass density is (A) 200 kg/m3 (B) 400 kg/m3 (C) 600 kg/m3 (D) 800 kg/m

Last Answer : Answer: Option D

Description : If P kg/m2 is the upward pressure on the slab of a plain concrete footing whose projection on either side of the wall is a cm, the depth of foundation D is given by (A) D = 0.00775 aP (B) D = 0.0775 aP (C) D = 0.07775 aP (D) D = 0.775 Pa

Last Answer : Answer: Option A

Description : What is the unit of relative density? (1) kg/m (2) kg/m2 (3) kg/m3 (4) It has no unit

Last Answer : It has no unit

Description : A particle A of diameter 10 microns settles in an oil of specific gravity 0.9 and viscosity 10 poise under Stoke's law. A particle B with diameter 20microns settling in the same oil will have a settling velocity (A) ... ) One fourth as that of A (C) Twice as that of A (D) Four times as that of A

Last Answer : (B) One fourth as that of A

Description : The following gas phase reactions are carried out isothermally in a CSTR. A → 2R ; r1 = k1pA ; k1 = 20mole/(sec.m3 bar) A → 3S ; r2 = k2 pA ; k2 = 40mole/(sec.m3 .bar) What is the maximum possible value of FR(mole/sec.)? (A) 1/3 (B) 1/2 (C) 2/3 (D) 2

Last Answer : (C) 2/3

Description : Hot water (0.01 m3 /min) enters the tube side of a counter current shell and tube heat exchanger at 80°C and leaves at 50°C. Cold oil (0.05 m3 /min) of density 800 kg/m3 and specific heat of ... mean temperature difference in °C is approximately (A) 32 (B) 37 (C) 45 (D) 50

Last Answer : (A) 32

Description : A lubricant 100 times more viscous than water would have a viscosity (in Pa.s) (A) 0.01 (B) 0.1 (C) 1 (D) 10

Last Answer : (B) 0.1

Description : At equilibrium the concentration of water in vapour phase (C* ) in kg/m3 of air space and the amount of water (m) adsorbed per kg of dry silica gel are related by, C* = 0.0667m. To maintain dry conditions in a room ... which the temperature is maintained constant) is (A) 0.0 (B) 0.2 (C) 0.4 (D) 1.0

Last Answer : (C) 0.4