The equations of motion of a two degree of freedom system, are, in
general:
A. coupled
B. linear
C. uncoupled
D. none of the above

1 Answer

Answer :

A. coupled

Related questions

Description : Which of the following systems produce a vibration in the foundation? (A) Coupled machine(B) Uncoupled machine (C) Balanced machine (D) Unbalanced machine

Last Answer : (D) Unbalanced machine

Description : Which of the following systems produce a vibration in the foundation? (A) Coupled machine (B) Uncoupled machine (C) Balanced machine (D) Unbalanced machine

Last Answer : (D) Unbalanced machine

Description : Which of the following systems produce a vibration in the foundation? a) Unbalanced machine b) Balanced machine c) Coupled machine d) Uncoupled machine

Last Answer : a) Unbalanced machine

Description : The equations of motion of a two-degree-of-freedom system can be expressed in terms of the displacement of either of the two masses.

Last Answer : True

Description : In two degree of freedom system, the number of coordinates required to specify the motion of system are A. One B. Two C. Three D. Four

Last Answer : B. Two

Description : Co-ordinate coupling is an example of A. Single Degree of Freedom System B. Several Degree of Freedom System C. Two Degree of Freedom System D. None

Last Answer : C. Two Degree of Freedom System

Description : Identify the given system [fixed--spring—mass—spring—mass—spring--fixed] A. Single Degree of Freedom System B. Several Degree of Freedom System C. Two Degree of Freedom System D. None

Last Answer : C. Two Degree of Freedom System

Description : In two degree of freedom system, the numbers of amplitude observed are A. OneB. Two C. Three D. None

Last Answer : B. Two

Description : The relative amplitudes of different degrees of freedom in a two-degree-of-freedom system depend on the natural frequency.

Last Answer : True

Description : The mass, stiffness, and damping matrices of a two-degree-of-freedom system are symmetric.

Last Answer : True

Description : When a two-degree-of-freedom system is subjected to a harmonic force, the system vibrates at the a. frequency of applied force b. smaller natural frequency c. larger natural frequency d. None of the above

Last Answer : a. frequency of applied force

Description : The first critical speed of an automobile running on a sinusoidal road is calculated by (modeling it as a single degree of freedom system) A Resonance B Approximation C Superposition D Rayleigh quotient

Last Answer : A Resonance

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... Φ) C x = (A - Bt) e - ωt D x = X e - ξωt (cos ω d t + Φ)

Last Answer : A x = (A + Bt) e – ωt

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A The frequency will increase B The frequency will stay the same C The frequency will decrease D None of these

Last Answer : C The frequency will decrease

Description : A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of √3k/m , the ratio of the amplitude of steady state response to the static deflection of the spring is __________ A. 0.2 B. 0.5 C. 0.8 D. None of the above

Last Answer : B. 0.5

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... ) C. x = (A - Bt) e - ωt D. x = X e - ξωt (cos ω d t + Φ

Last Answer : A. x = (A + Bt) e – ωt

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the A differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... (C)x = (A - Bt) e - ωt ( D )x = X e - ξωt (cos ω d t + Φ

Last Answer : ( A ) x = (A + Bt) e – ωt

Description : What is the effect on the undamped natural frequency of a single-degree-of- C freedom system if the mass of the system is increased? ( A ) The frequency will increase ( B ) The frequency will stay the same ( C ) The frequency will decrease ( D ) None of these

Last Answer : ( C ) The frequency will decrease

Description : The number of distinct natural frequencies for an n-degree-of-freedom system can be a. 1 b. ∞ c. n

Last Answer : c. n

Description : The first critical speed of an automobile running on a sinusoidal road is calculated by (modeling it as a single degree of freedom system) a) Resonance b) Approximation c) Superposition d) Rayleigh quotient

Last Answer : a) Resonance

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equati damped free vibrations having single degree of freedom. What will be the solution to this differ equation if the system is critically ... c. x = (A - Bt) e - ωt d. x = X e - ξωt (cos ω d t + Φ)

Last Answer : a. x = (A + Bt) e – ωt

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the stiffness of one or more of the springs is increased? (A) The frequency will increase (B) The frequency will stay the same (C) The frequency will decrease (D) None of these

Last Answer : (A) The frequency will increase

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A) The frequency will increase (B) The frequency will stay the same (C) The frequency will decrease (D) None of these

Last Answer : (C) The frequency will decrease

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the no of degree of freedom vibration.a. Three degree of freedom vibration b. Two degree of freedom vibration c. Single degree of freedom vibration d. None of the above

Last Answer : b. Two degree of freedom vibration

Description : What are discrete parameter systems? *1 point (A) Systems which have infinite number of degree of freedom (B) Systems which have finite number of degree of freedom (C) Systems which have no degree of freedom (D) None of the above

Last Answer : (B) Systems which have finite number of degree of freedom

Description : What are discrete parameter systems? A. Systems which have infinite number of degree of freedom B. Systems which have finite number of degree of freedom C. Systems which have no degree of freedom D. None of the above

Last Answer : B. Systems which have finite number of degree of freedom

Description : What are discrete parameter systems?a. Systems which have infinite number of degree of freedom b. Systems which have finite number of degree of freedom c. Systems which have no degree of freedom d. None of the above

Last Answer : b. Systems which have finite number of degree of freedom

Description : What is meant by coupled differential equation? A. The differential equation in which only rectilinear motions exit B. The differential equation in which only angular motions exit C. The differential equation in which both rectilinear and angular motions exit D. None of the above

Last Answer : C. The differential equation in which both rectilinear and angular motions exit

Description : What is meant by coupled differential equation? A) The differential equation in which only rectilinear motions exit B) The differential equation in which only angular motions exit C) The differential equation in which both rectilinear and angular motions exit D) None of the above

Last Answer : C) The differential equation in which both rectilinear and angular motions exit

Description : What is meant by coupled differential equation? a. The differential equation in which only rectilinear motions exit b. The differential equation in which only angular motions exit c. The differential equation in which both rectilinear and angular motions exit d. None of the above

Last Answer : c. The differential equation in which both rectilinear and angular motions exit

Description : The number of degrees of freedom in simple spring mass system is A. Zero B. One C. Two D. Three

Last Answer : B. One

Description : The number of degrees of freedom of a vibrating system depends on a. number of masses b. number of masses and degrees of freedom of each mass c. number of coordinates used to describe the position of each mass d. None of the above

Last Answer : b. number of masses and degrees of freedom of each mass

Description : Centrifugal absorber is used to reduce A) Centrifugal force in rotating system B) Torsional vibration of rotating system C) Vibration in linear system D) Transverse vibrations

Last Answer : B) Torsional vibration of rotating system

Description : During free vibration, different degrees of freedom oscillate at different frequencies.

Last Answer : False

Description : During free vibration, different degrees of freedom oscillate with different phase angles.

Last Answer : False

Description : The number of degrees of freedom of a simple pendulum is: (a) 0 (b) 1 (c) 2

Last Answer : (b) 1

Description : The system which requires two coordinates independently to describe its motion completely is called a--- A. 2 DOF B. SDOF C. DOF D. None of above

Last Answer : A. 2 DOF

Description : The motion of a system executing harmonic motion with one natural frequency is known as _______ A. principal mode of vibration B. natural mode of vibration C. both a. and b. D. none of the above

Last Answer : C. both a. and b.

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + s/m X x = 0 If the roots of this equation are real, then the system will be A. over damped B. under damped C. critically damped D. none of the mentioned

Last Answer : A. over damped

Description : The motion of a system executing harmonic motion with one natural frequency is known as _______ A) principal mode of vibration B) natural mode of vibration C) both a. and b. D)none of the above

Last Answer : C) both a. and b.

Description : If frequency of excitation of a forced vibration system with negligible damping is very close to natural frequency of the system, then the system will A) Execute harmonic motion of large amplitude B) Beat with a very high peak amplitude C) Perform aperiodic motion D) None of the above

Last Answer : A) Execute harmonic motion of large amplitude

Description : The equation of motion for spring mass system includes A. Inertia Force B. Spring Force C. Both D. Gravitational force

Last Answer : C. Both

Description : The equation of motion for a vibrating system with viscous damping is d 2 x/dt 2 + c/m X dx/dt + k/m X x = 0 If the roots of this equation are real, then the system will be a) over damped b) under damped c) critically damped d) none of the mentioned Ans:a

Last Answer : a) over damped

Description : The equation m(d 2 x/ dt 2 ) + c (dx/dt) + Kx = F 0 sin ωt is a second order differential equation. The solution of this linear equation is given as A. complementary function B. particular function C. sum of complementary and particular function D. difference of complementary and particular function

Last Answer : C. sum of complementary and particular function

Description : In the following figure ABCD is a cyclic quadrilateral, the sum of degree measures of ∠A and ∠D is: (SOURCE: Fig. 3.7, Exercise 3.7, Chapter 3, PAIR of LINEAR EQUATIONS in TWO VARIABLES, NCERT, Class X) (a) 120° (b) 180° (c) 230°(d) 250°

Last Answer : (c) 230°

Description : If harmonic motion of same frequency and same phase are superimposed in two perpendicular directions ( x and y) then, the resultant motion will be, A) circle B) An ellipse C) An square D) An rectangle

Last Answer : C) An square

Description : The resultant motion of two Simple Harmonic Motions will be A. Simple Harmonic MotionB. Periodic Motion C. Projectile Motion D. Zero

Last Answer : A. Simple Harmonic Motion

Description : Which of the following statements is/are true for coulomb damping? 1. Coulomb damping occurs due to friction between two lubricated surfaces2. Damping force is opposite to the direction of motion of vibrating body ... 2, 3 and statement 4 c. Only statement 2 d. All the above statements are true

Last Answer : c. Only statement 2

Description : What is meant by critical damping coefficient? * 1 point (A) Frequency of damped free vibrations is less than zero (B). The motion is a periodic in nature (C). Both a. and b. (D). None of the above

Last Answer : (C). Both a. and b.