Find the co-ordinates of the in-centre of the triangle whose vertices are (–36, 7), (20, 7) and (0, –8). -Maths 9th

1 Answer

Answer :

Let A(1, 2), B(0, –1) and C(2, –1) be the mid-points of the sides PQ, QR and RP of the triangle PQR. Let the co-ordinates of P, Q and R be (x1, y1), (x2, y2) and (x3 , y3) respectively. Then, by the mid-point formula.\(rac{x_1+x_2}{2}\) = 1 and \(rac{y_1+y_2}{2}\) = 2  ⇒ x1 + x2 = 2 and y1 + y2 = 4          ...(i)\(rac{x_1+x_3}{2}\) = 2 and \(rac{y_1+y_3}{2}\) = -1  ⇒ x1 + x3 = 2 and y1 + y3 = -2          ...(ii)\(rac{x_2+x_3}{2}\) = 0 and \(rac{y_2+y_3}{2}\) = -1  ⇒ x2 + x3 = 0 and y2 + y3 = -2          ...(iii)From (i), (ii) and (iii)x1 + x2 + x1 + x3 +x2 + x3 = 2 + 4 + 0 and y1 + y2 + y1 + y3 + y2 + y3 = 4 + (–2) + (–2)⇒ x1 + x2 + x3 = 3 and y1 + y2 + y3 = 0Now, (x1 + x2 + x3) – (x1 + x2) = 3 – 2 ⇒ x3 = 1 and (y1 + y2 + y3) – (y1 + y2) = 0 – 4 ⇒ y3 = – 4 (x1 + x2 + x3) – (x1 + x3) = 3 – 4 ⇒ x2 = –1 and (y1 + y2 + y3) – (y1 + y3) = 0 – (–2) ⇒ y2 = 2 (x1 + x2 + x3) – (x2 + x3) = 3 – 0 ⇒ x1 = 3 and (y1 + y2 + y3) – (y2 + y3) = 0 – (–2) ⇒ y1 = 2∴ The vertices of the ΔPQR are P(3, 2), Q(–1, 2) and R(1, –4)Hence, co-ordinates of centroid of ΔPQR = \(\bigg(rac{3+(-1)+1}{3},rac{2+2+(-4)}{3}\bigg)\) = (1, 0).

Related questions

Description : Find the co-ordinates of the circumcentre of the triangle whose vertices are (3, 0), (–1, –6) and (4, –1). Also find its circum-radius. -Maths 9th

Last Answer : Let A ≡ (2, - 2), B ≡ (-2, 1), C ≡ (5, 2 ). Then,AB = \(\sqrt{(-2-2)^2+(1+2)^2}\) = \(\sqrt{16+9}\) = \(\sqrt{25}\) = 5BC = \(\sqrt{(5+2)^2+(2-1)^2}\) = \(\sqrt{49+1}\) = \(\sqrt{50}\) = \( ... of ΔABC = \(rac{1}{2}\) x base x height = \(rac{1}{2}\) x AB x AC = \(rac{1}{2}\)x 5 x 5 = 12.5 sq. units.

Description : If A(3, 5), B(– 5, – 4), C(7, 10) are the vertices of a parallelogram taken in order, then the co-ordinates of the fourth vertex are: -Maths 9th

Last Answer : (c) RhombusCo-ordinates of P are \(\bigg(rac{-1-1}{2},rac{-1+4}{2}\bigg)\)i.e, \(\big(-1,rac{3}{2}\big)\)Co-ordinates of Q are \(\bigg(rac{-1+5}{2},rac{4+4}{2}\bigg)\)i.e, (2, 4)Co-ordinates of R ... \sqrt{(2-2)^2+(4+1)^2}\) = \(\sqrt{25}\) = 5⇒ PR ≠ SQ ⇒ Diagonals are not equal ⇒ PQRS is a rhombus.

Description : (–2, –1) and (4, –5) are the co-ordinates of vertices B and D respectively of rhombus ABCD. Find the equation of the diagonal AC. -Maths 9th

Last Answer : 3\(x\) - 2y + 5 = 0 ⇒ -2y = -3\(x\) - 5 ⇒ y = \(rac{3}{2}\)\(x\) + \(rac{5}{2}\)On comparing with y = m\(x\) + c, we see that slope of given line = \(rac{3}{2}\)As the required line is perpendicular to the given line, ... - 4)⇒ 3(y - 5) = - 2\(x\) + 8 ⇒ 3y - 15 = -2\(x\) + 8 ⇒ 3y + 2\(x\) - 23 = 0

Description : The co-ordinates of mid-points of sides of a triangle are (1, 2), (0, –1) and (2, –1). Find its centroid. -Maths 9th

Last Answer : ABCD is a parallelogram, if the mid-points of diagonals AC and BD have the same co-ordinates (∵ Diagonals of a parallelogram bisect each other)Co-ordinates of mid-point of AC are \(\bigg(rac{a+2}{2},rac{-11+15}{2}\bigg)\) = \(\bigg(rac ... \(rac{a+2}{2}\) = 3 and 2 = \(rac{b+1}{2}\) ⇒ a = 4, b = 3.

Description : Find the area of triangle ABC whose vertices are A (-5, 7), B (-4, -5) and C (4, 5). -Maths 9th

Last Answer : the answer is 56.55u because height is 8.7 base is 13 cm

Description : If the co-ordinates of the mid-points of the sides of a triangle are (1, 1), (2, –3), (3, 4), find its incentre. -Maths 9th

Last Answer : (b) 3 : 2 ; m = \(-rac{2}{5}\)Let P(m, 6) divides AB in the ratio k : 1. Then co-ordinates of P are \(\bigg(\)\(rac{2k-4}{k+1}\), \(rac{8k+3}{k+1}\)\(\bigg)\)Given, co-ordinates of P are (m, 6) ⇒\(rac{2k-4}{k+1} ... 2}-4}{rac{3}{2}+1}\) = \(rac{3-4}{rac{5}{2}}\) = \(rac{-2}{5}\)∴ m = \(rac{-2}{5}\).

Description : The coordinates of the circumcentre of the triangle whose vertices are (8, 6), (8, –2) and (2, –2). -Maths 9th

Last Answer : (a) bx = ayGiven, AM = BM ⇒ AM2 = BM2 ⇒ [x – (a + b)]2 + [y – (b – a)]2 = [x – (a – b)]2 + (y –(a + b))2

Description : If (0, 0) and (2, 0) are the two vertices of a triangle whose centroid is (1, 1), then the area of the triangle is: -Maths 9th

Last Answer : (b) \(\bigg(rac{2\sqrt{13}+20\sqrt2}{\sqrt{13}+\sqrt{17}+5\sqrt2},rac{8\sqrt{13}-6\sqrt{17}}{\sqrt{13}+\sqrt{17}+5\sqrt2}\bigg)\)Let A(x1, y1), B(x2, y2), C(x3, y3) be the vertices of ΔABC the ... +6)^2}\) = \(\sqrt{4+196}\) = \(\sqrt{200}=10\sqrt{2}\)∴ Co-ordinates of incentre of Δ ABC are

Description : The orthocentre of a triangle whose vertices are (0, 0), (3, 0) and (0, 4) is -Maths 9th

Last Answer : (c) 60ºSince p is the length of perpendicular from origin on the straight line ax + by - p = 0.p = \(rac{|a.0+b.0-p|}{\sqrt{a^2+b^2}}\)⇒ 1 = \(\sqrt{a^2+b^2}\) ⇒ 1 ... 60° + y sin 60° = p Hence required angle is 60°, which is the angle between the perpendicular and the positive direction of x-axis.

Description : What is the equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinates axes whose sum is –1 ? -Maths 9th

Last Answer : Diagonals of a rhombus bisect each other at right angles ⇒ Co-ordinates of mid-points of AC and BD are equal∴ 0 = \(\bigg(rac{4+(-2)}{2},rac{-5+(-1)}{2}\bigg)\) = (1, -3)Slope of BD = \(rac{-5+1}{4+2}\) = \(rac{-4}{6}\) ... (rac{3}{2}\) isy + 3 = \(rac{3}{2}\) (x - 1)⇒ 2y + 6 = 3x - 3 ⇒ 2y = 3x - 9.

Description : Find the area of a triangle whose vertices are (1, 3), (2, 4) and (5, 6). -Maths 9th

Last Answer : Let OR = \(x\) units (i) ΔQOR ~ ΔPAR⇒ \(rac{PA}{AR}\) = \(rac{QO}{OR}\) ⇒ \(rac{6}{x+4}\) = \(rac{3}{x}\)⇒ \(rac{x}{x+4}\) = \(rac{3}{6}\) ⇒ \(rac{x}{x+4}\) = \(rac{1}{2}\)⇒ 2\(x\) = \(x\) + 4 ⇒ \(x ... = \(rac{1}{2}\) (OQ + AP) x OA = \(rac{1}{2}\) (3+6) x 4 = \(rac{1}{2}\) x 9 x 4 = 18 sq. units.

Description : The point A(0, 0), B(1, 7) and C(5, 1) are the vertices of a triangle. Find the length of the perpendicular from -Maths 9th

Last Answer : (b) 3x - y = 0 Given lines are 3x - y - 3 = 0 and 3x - y + 5 = 0. Line parallel to the given lines can be written as 3x - y + c = 0 ...(i) Let us taken a point, say ... 5c + 15 = - 3c + 15 ⇒ 8c = 0 ⇒ c = 0. Substituting c = 0 in (i), the required equation is 3x - y = 0.

Description : A(5,0) and B(0,8) are two vertices of triangle OAB. a). What is the equation of the bisector of angle OAB. b). If E is the point of intersection of this bisector and the line through A and B,find the coordinates of E. Hence show that OA:OB = AE:EB -Maths 9th

Last Answer : NEED ANSWER

Description : A(5,0) and B(0,8) are two vertices of triangle OAB. a). What is the equation of the bisector of angle OAB. b). If E is the point of intersection of this bisector and the line through A and B,find the coordinates of E. Hence show that OA:OB = AE:EB -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : Find the co-ordinates of the points on the x-axis which are at a distance of 10 units from the point (– 4, 8)? -Maths 9th

Last Answer : (a) Internal division: If P(x, y) divides the line segment formed by the joining of the points A (x1, y1) and B (x2, y2) internally in the ratio m1 : m2. Then\(x=rac{m_1x_2+m_2x_1}{m_1+m_2}\) and \(y=rac ... : 1, the co-ordinates of the mid-point are \(\bigg(rac{x_1+x_2}{2},rac{y_1+y_2}{2}\bigg)\).

Description : Find the area of quadrilateral ABCD whose vertices are A (1, 0), B (5, 3), C (2, 7), D ( -2, 4) -Maths 9th

Last Answer : answer:

Description : Let PS be the median of the triangle with vertices P(2, 2), Q(6, –1) and R(7, 3). -Maths 9th

Last Answer : (b) a = √2b Let D be the mid-point of BC. Then D ≡ \(\bigg(rac{a+0}{2},rac{0}{2}\bigg)\)i.e. \(\bigg(rac{a}{2},0\bigg)\)Let E be the mid-point of AC, thenE = \(\bigg(rac{a+0}{2},rac{0+b}{2}\bigg)\) = \(\bigg ... \(rac{b}{a}.\)∴ From (i), \(rac{-2b}{a}\) x \(rac{b}{a}\) = -1⇒ 2b2 = a2 ⇒ a = √2 .

Description : In the adjoining figure, P and Q have co-ordinates (4, 6)and (0, 3) respectively. Find (i) the co-ordinates of R (ii) Area of quadrilateral OAPQ. -Maths 9th

Last Answer : Let the line 2x + 3y - 30 = 0 divide the join of A(3, 4) and B(7, 8) at point C(p, q) in the ratio k : 1. Then,p = \(rac{7k+3}{k+1}\), q = \(rac{8k+4}{k+1}\)As the point C lies on the line 2x + 3y - 30 ... {3}{2}+1},rac{8 imesrac{3}{2}+4}{rac{3}{2}+1}\bigg)\) = \(\big(rac{27}{5},rac{32}{5}\big)\).

Description : What are the co-ordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 ? -Maths 9th

Last Answer : (d) 2x + 9y + 7 = 0PS being the median of ΔPQR, S is the mid-point of QR, i.e., Coordinates of S ≡ \(\bigg(rac{6+7}{2},rac{-1+3}{2}\bigg)\) = \(\bigg(rac{13}{2},1\bigg)\)Slope of line parallel to PS = Slope of PS= \(rac{1 ... y + 1) = \(rac{-2}{9}\)(x - 1), i.e., 9y + 9 = - 2x + 2 ⇒ 2x + 9y + 7 = 0.

Description : Without using Pythagoras’ theorem, show that the points A (0, 4), B(1, 2) and C(3, 3) are the vertices of a right angle triangle. -Maths 9th

Last Answer : Slope (m) = \(rac{(y_2-y_1)}{(x_2-x_1)}\) = \(rac{6-2}{5-1}\) = \(rac{4}{4}\) = 1Also slope (m) = tan θ, where θ is the inclination of the line to the positive direction of the x-axis in the anticlockwise direction. tan θ = 1 ⇒ θ = tan –11 = 45º.

Description : What is the perimeter of the triangle with the vertices A(–4, 2), B(0, –1) and C(3, 3) ? -Maths 9th

Last Answer : The two given lines are ax + by + c1 = 0 and ax + by + c2 = 0. Any line parallel to these two lines and midway between them is ax + by + c = 0 ...(i) Putting x = 0, y = \(-rac{c}{b}\) is ... c1 = c - c2 ⇒ c = \(rac{c_1+c_2}{2}\)∴ Required equation is ax + by + \(rac{c_1+c_2}{2}\) = 0.

Description : The medians AD and BE of the triangle with vertices A(0, b), B(0, 0) and C(a, 0) are mutually perpendicular if -Maths 9th

Last Answer : (c) \(rac{b+k}{f+h}\)Let the slope of the lin passing through the points (-k, h) and (b, - f) be m1. Then m1 = \(rac{-f-h}{b+k}\) = \(-\bigg(rac{f+h}{b+k}\bigg)\)\(\bigg[Slope = rac{y_2-y_1}{x_2-x_1}\bigg]\) ... \(-rac{1}{m_1}\)= \(rac{-1}{-\big(rac{f+h}{b+k}\big)}\) = \(\bigg(rac{b+k}{f+h}\bigg)\)

Description : If A (-2, 4), B (0, 0) and C (4, 2) are the vertices of triangle ABC, then find the length of the median through the vertex A. -Maths 9th

Last Answer : D=slid ht of BC D≅(20+4​,20+2​) =(2,1) ∴ Length of median = Light of AD =root(−2−2)2+(4−1)2​=root42+32​=5 hope it helps thank u

Description : Write the coordinates of the vertices of a rectangle whose lenght and breadth are 7 and 4 units respectively,one vertex atthe the origin,the longer side lies on the x-axis and one of the vertices lies in the third quadrant. -Maths 9th

Last Answer : Solution :-

Description : Name the quadrilateral ABCD, the coordinates of whose vertices are A(3, 5), B(1, 1), C(5, 3) and D(7, 7). -Maths 9th

Last Answer : (b) Equilateral, \(2\sqrt3a^2\) sq. unitsLet A(a, a), B(-a, -a) and C \((-\sqrt3a,\sqrt3a)\) be the vertices of ΔABC. Then,AB = \(\sqrt{(a+a)^2+(a+a)^2}\) = \(\sqrt{4a^2+4a^2}\) = \(\sqrt{8a^2}\) = \( ... 4}\) (side)2 = \(rac{\sqrt3}{4}\) x (\(2\sqrt2a\))2= \(rac{\sqrt3}{4}\) x 8a2 = \(2\sqrt3a^2\).

Description : The vertices A(4, 5), B(7, 6), C(4, 3) and D(1, 2) from the quadrilateral ABCD whose special name is -Maths 9th

Last Answer : (a) (5, 2)Let A(8, 6) , B(8, -2) and C(2, -2) be the vertices of the given triangle and P(x, y) be the circum-centre of this triangle. Then, PA2 = PB2 = PC2 Now, PA2 = PB2 ⇒ (x - 8)2 + (y - 6)2 = (x ... 4 = x2 - 4x + 4 + y2 + 4y + 4 ⇒ 12x = 60 ⇒ x = 5. ∴ Co-ordinates of the circumcentre are (5, 2).

Description : Draw the graph of the equation 3x + 4y = 12 and find the co-ordinates of the points of intersection of the equation with the co-ordinate axes. -Maths 9th

Last Answer : Solution :-

Description : What do you mean by Co-ordinates (Abscissa and Ordinate)? Explain with figure. -Maths 9th

Last Answer : Co-ordinate Geometry is that branch of geometry in which two numbers, called co-ordinates are used to indicate the position of a point in a plane and which make use of algebraic methods in the study of geometric figures.

Description : Distance Formula for co-ordinates: -Maths 9th

Last Answer : The position of each point of the plane is determined with reference to the rectangular axes by means of a pair of numbers called co-ordinates which are distances of the point from the respective axes. The distance of the ... are (x, 0) and the co-ordinates of any point of the y-axis are (0, y)

Description : Section formula for co-ordinates: -Maths 9th

Last Answer : The co-ordinate axes separate the plane into four regions called the quadrants. By custom the quadrants are numbered I, II, III, IV, in the counter clockwise direction as shown in the figure. (i) For distances along the x- ... +)X′OY′3rd quadrantx < 0, y < 0(-, -)XOY′4th quadrantx > 0, y < 0(+, -)

Description : Let the opposite angular points of a square be (3, 4) and (1, – 1), Find the co-ordinates of the remaining angular points. -Maths 9th

Last Answer : P ≡ (-3, 2), Q ≡ (-5, -5), R ≡ (2, -3), S ≡ (4, 4)∴ PQ = \(\sqrt{(-5+3)^2+(-5-2)^2}\) = \(\sqrt{4+49}\) = \(\sqrt{53}\)QR = \(\sqrt{(2+5)^2+(-3+5)^2}\) = \(\sqrt{49+4}\) = \ ... of rhombus = \(rac{1}{2}\) x (Product of length of diagonals) = \(rac{1}{2}\) x \(5\sqrt2\) x \(9\sqrt2\) = 45 sq. units.

Description : The line x – 4y = 6 is the perpendicular bisector of the segment AB and the co-ordinates of B are (1, 3). Find the co-ordinates of A. -Maths 9th

Last Answer : Co-ordinates of A are \(\bigg(rac{3 imes9+1 imes5}{3+1},rac{3 imes6+1 imes-2}{3+1}\bigg)\) = \(\bigg(rac{32}{4},rac{16}{4}\bigg)\), i.e. (8, 4)Now, \(x\) - 3y + 4 = 0 ⇒ -3y = -\(x\) - 4 ⇒ y = \(rac{x}{3}+rac{4} ... 8) [Using, y - y1 = m (x - x1)]⇒ 3y - 12 = \(x\) - 8 ⇒ 3y - \(x\) = 4.

Description : If the points with the co-ordinates {a, ma}, {b, (m + 1)b}, {c, (m + 2)c} are collinear, then which of the following is correct ? -Maths 9th

Last Answer : (d) (7, -2)Let the co-ordinates of R be (x, y). As can be easily seen, it is a point of external division Also, PR = 2QR⇒ R divides the join of P and Q externally in the ratio 2:1. ∴ x = \(rac{2 imes2-1 imes-3}{2-1}\), ... }{2-1}\)⇒ x = 4 + 3 = 7 and y = 2 - 4 = -2. ∴ Co-ordinates of R are (7, -2).

Description : The co-ordinates of P and Q are (–3, 4) and (2, 1) respectively. -Maths 9th

Last Answer : (b) \(rac{\pi}{4}\)\(x\) cos θ + y sin θ = 2 ⇒ y sin θ = 2 - \(x\) cos θ ⇒ y = - \(x\) cot θ + 2 ⇒ Slope of this line = - cot θ Also, given \(x\) - y = 3 ⇒ y = \(x\) + 3 ⇒ Slope of this ... lines are perpendicular, - cot θ x 1 = -1⇒ cot θ = 1 ⇒ cot θ = cot \(rac{\pi}{4}\) ⇒ θ = \(rac{\pi}{4}\)

Description : For drawing a frequency polygon of a continuous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abscissae are, respectively -Maths 9th

Last Answer : NEED ANSWER

Description : For drawing a frequency polygon of a continuous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abscissae are, respectively -Maths 9th

Last Answer : (c) Class marks i.e., the mid-point of the classes are abscissa of the points, which we plot for frequency polygon.

Description : Find the area of the quadrilateral whose vertices are (3, 4), (0, 5), (2, –1) and (3, –2). -Maths 9th

Last Answer : Let A(-36, 7), B(20, 7) and C(0, -8) be the vertices of the given triangle.Then, a = BC = \(\sqrt{(0-20)^2+(-8-7)^2}\) = \(\sqrt{400+225}\) = \(\sqrt{625}\) = 25b = AC =\(\sqrt{(0-36)^2+(-8-7 ... (rac{-900+780}{120},rac{175+273-448}{120}\bigg)\) = \(\bigg(rac{-120}{120},rac{0}{120}\bigg)\) = (-1, 0)

Description : The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to -Maths 9th

Last Answer : Solution of this question

Description : The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to -Maths 9th

Last Answer : Solution of this question

Description : An equilateral triangle is cut from its three vertices to form a regular hexagon. What is the percentage of area wasted? -Maths 9th

Last Answer : (c) 33.33%When an equilateral triangle is cut from its three vertices to form a regular hexagon then out of the 9 equilateral triangles that form ΔABC, three triangle, ΔADE, ΔFCG,ΔIHB are cut off and 6 remain in the ... to get the hexagon.∴ Area wasted = \(\bigg(rac{1}{3} imes100\bigg)\)% = 33.33%

Description : Three of the six vertices of a regular hexagon are chosen at random. The probability that the triangle with these vertices is equilateral equals : -Maths 9th

Last Answer : (c) \(rac{1}{10}\)Let S be the sample space.Then n(S) = Number of triangles formed by selecting any three vertices of 6 vertices of a regular hexagon= 6C3 = \(rac{6 imes5 imes4}{3 imes2}\) = 20.Let A : Event that the ... Required probability = \(rac{n(A)}{n(S)}\) = \(rac{2}{20}\) = \(rac{1}{10}\).

Description : Prove that the points (2, –2), (–2, 1) and (5, 2) are the vertices of a right angled triangle. Also find the length of the hypotenuse -Maths 9th

Last Answer : Let the co-ordinates of any point on the x-axis be (x, 0). Then distance between (x, 0) and (– 4, 8) is 10 units.⇒ \(\sqrt{(x+4)^2+(0-8)^2}\) = 10 ⇒ x2 + 8x + 16 + 64 = 100 ⇒ x2 + 8x – 20 = 0 ⇒ (x + 10) (x – 2) = 0 ⇒ x = –10 or 2 ∴ The required points are (– 10, 0) and (2, 0).

Description : Prove that the points (1, –1) ((-1/2),(1/2)) and (1, 2) are the vertices of an isosceles triangle. -Maths 9th

Last Answer : (x, y) is equidistant from the points (2, 1) and (1, –2) ⇒ Distance between (x, y) and (2, 1) = Distance between (x, y) and (1, –2)⇒ \(\sqrt{(x-2)^2+(y-1)^2}\) = \(\sqrt{(x-1)^2+(y+2)^2}\)⇒ x2 – 4x + 4 + y2 – 2y + 1 = x2 – 2x + 1 + y2 + 4y + 4⇒ – 4x + 2x – 2y – 4y = 0 ⇒ –2x – 6y = 0 ⇒ x + 3y = 0

Description : The area of a triangle is 5. Two of its vertices are (2, 1) and (3, –2). The third vertex is (x, y) -Maths 9th

Last Answer : Let A(x1, y1) = (3, 4), B(x2, y2) ≡ (0, 5), C(x3, y3) ≡ (2, -1)and D(x4, y4) ≡ (3, -2) be the vertices of quadrilateral ABCD.Area of quad. ABCD = \(rac{1}{2}\) |{(x1 y2 - x2 y1) + (x2y3 - x3y2) + (x3y4 - x4y3) ... ) + (12 + 6)}|= \(rac{1}{2}\) |{15 - 11 + 0 + 18}| = \(rac{1}{2}\)x 22 = 11 sq. units.

Description : The two vertices of a triangle are (2, –1), (3, 2) and the third vertex lies on the line x + y = 5. The area of the triangle is 4 units. -Maths 9th

Last Answer : (c) (5, 0) or (1, 4) Let the third vertex of the triangle be P(a, b). Since it lies on the line x + y = 5, a + b = 5 ...(i) Also, given area of triangle formed by the points (2, -1), (3, 2) and (a, b) = 4 ... b) - (-3a + b) = 5 + 15⇒ 4a = 20 ⇒ a = 5 ⇒ b = 0. ∴ The points are (1, 4) and (5, 0).

Description : Write the coordinates of the vertices of a rectangle whose length and breadth are 5 and 3 units respectively, -Maths 9th

Last Answer : Given, length of a rectangle = 5 units and breadth of a rectangle = 3 units One vertex is at origin i.e., (0, 0) and one of the other vertices lies in III quadrant. So, the length of the rectangle is 5 ... negative,direction of y-axis and then vertex is C(0, -3). The fourth vertex B is (-5, - 3).

Description : Write the coordinates of the vertices of a rectangle whose length and breadth are 5 and 3 units respectively, -Maths 9th

Last Answer : Given, length of a rectangle = 5 units and breadth of a rectangle = 3 units One vertex is at origin i.e., (0, 0) and one of the other vertices lies in III quadrant. So, the length of the rectangle is 5 ... negative,direction of y-axis and then vertex is C(0, -3). The fourth vertex B is (-5, - 3).

Description : Write the coordinates of the vertices of a rectangle whose length and breadth are 6 and 3 units respectively, one vertex at the origin, the longer side lies on the y-axis and one of the vertices lies in the second quadrant. -Maths 9th

Last Answer : Solution :-

Description : Construct a triangle whose sides are 3.6 cm , 3.0 cm and 4. 8 cm. Bisect the smallest angle and .measure each part. -Maths 9th

Last Answer : To construct a triangle ABC in which AB = 3.6 cm, AC = 3.0 cm and BC = 4. 8 cm, use the following steps. Draw a line segment BC of length 4.8 cm. From B, point A is at a distance of 3.6 cm. ... at P. Joining BP, we obtain angle bisector of ∠B. Flere, ∠ABC=39° Thus, ∠ABD = ∠DBC = ½ x 139° = 19.5°

Description : Construct a triangle whose sides are 3.6 cm , 3.0 cm and 4. 8 cm. Bisect the smallest angle and .measure each part. -Maths 9th

Last Answer : To construct a triangle ABC in which AB = 3.6 cm, AC = 3.0 cm and BC = 4. 8 cm, use the following steps. 1.Draw a line segment BC of length 4.8 cm. 2.From B, point A is at a distance of 3.6 ... 3.Joining BP, we obtain angle bisector of ∠B. 4.Flere, ∠ABC=39° Thus, ∠ABD = ∠DBC = 1/2 x 139° = 19.5°