The two vertices of a triangle are (2, –1), (3, 2) and the third vertex lies on the line x + y = 5. The area of the triangle is 4 units. -Maths 9th

1 Answer

Answer :

(c) (5, 0) or (1, 4) Let the third vertex of the triangle be P(a, b). Since it lies on the line x + y = 5, a + b = 5      ...(i) Also, given area of triangle formed by the points (2, –1), (3, 2) and (a, b) = 4 units⇒ \(rac{1}{2}\)[2(2 – b) + 3(b + 1) + a(–1 – 2)] = ± 4 ⇒ [4 – 2b + 3b + 3 – 3a] = ± 8 ⇒ –3a + b = 1          ...(ii) or –3a + b = –15             ...(iii) Eqn (i) – Eqn (ii) ⇒ (a + b) – (–3a + b) = 5 – 1 ⇒ 4a = 4 ⇒ a = 1 ⇒ b = 4 Eqn (i) – Eqn (iii) ⇒ (a + b) – (–3a + b) = 5 + 15⇒ 4a = 20 ⇒ a = 5 ⇒ b = 0. ∴ The points are (1, 4) and (5, 0).

Related questions

Description : Write the coordinates of the vertices of a rectangle whose lenght and breadth are 7 and 4 units respectively,one vertex atthe the origin,the longer side lies on the x-axis and one of the vertices lies in the third quadrant. -Maths 9th

Last Answer : Solution :-

Description : The area of a triangle is 5. Two of its vertices are (2, 1) and (3, –2). The third vertex is (x, y) -Maths 9th

Last Answer : Let A(x1, y1) = (3, 4), B(x2, y2) ≡ (0, 5), C(x3, y3) ≡ (2, -1)and D(x4, y4) ≡ (3, -2) be the vertices of quadrilateral ABCD.Area of quad. ABCD = \(rac{1}{2}\) |{(x1 y2 - x2 y1) + (x2y3 - x3y2) + (x3y4 - x4y3) ... ) + (12 + 6)}|= \(rac{1}{2}\) |{15 - 11 + 0 + 18}| = \(rac{1}{2}\)x 22 = 11 sq. units.

Description : Write the coordinates of the vertices of a rectangle whose length and breadth are 6 and 3 units respectively, one vertex at the origin, the longer side lies on the y-axis and one of the vertices lies in the second quadrant. -Maths 9th

Last Answer : Solution :-

Description : If A (-2, 4), B (0, 0) and C (4, 2) are the vertices of triangle ABC, then find the length of the median through the vertex A. -Maths 9th

Last Answer : D=slid ht of BC D≅(20+4​,20+2​) =(2,1) ∴ Length of median = Light of AD =root(−2−2)2+(4−1)2​=root42+32​=5 hope it helps thank u

Description : If A(3, 5), B(– 5, – 4), C(7, 10) are the vertices of a parallelogram taken in order, then the co-ordinates of the fourth vertex are: -Maths 9th

Last Answer : (c) RhombusCo-ordinates of P are \(\bigg(rac{-1-1}{2},rac{-1+4}{2}\bigg)\)i.e, \(\big(-1,rac{3}{2}\big)\)Co-ordinates of Q are \(\bigg(rac{-1+5}{2},rac{4+4}{2}\bigg)\)i.e, (2, 4)Co-ordinates of R ... \sqrt{(2-2)^2+(4+1)^2}\) = \(\sqrt{25}\) = 5⇒ PR ≠ SQ ⇒ Diagonals are not equal ⇒ PQRS is a rhombus.

Description : Prove that any straight line drawn from the vertex of a triangle to the base is bisected by the straight line which -Maths 9th

Last Answer : answer:

Description : If the distance from the vertex to the centroid of an equilateral triangle is 6 cm, then what is the area of the triangle? -Maths 9th

Last Answer : (b) 27√3 cm2.Let G be the centroid of ΔPQR. Then, PG = 6 cm.Now, \(rac{PG}{GS}\) = \(rac{2}{1}\) ⇒ GS = 3 cm∴PS = PG + GS = 9 cm (i)∴ If a is the length of a side of ΔPQR, then ... = 6√3 cm∴ Area of equilateral ΔPQR = \(rac{\sqrt3}{4}\) (a)2= \(rac{\sqrt3}{4}\) x (6√3)2 cm2 = 27√3 cm2.

Description : A(5,0) and B(0,8) are two vertices of triangle OAB. a). What is the equation of the bisector of angle OAB. b). If E is the point of intersection of this bisector and the line through A and B,find the coordinates of E. Hence show that OA:OB = AE:EB -Maths 9th

Last Answer : NEED ANSWER

Description : A(5,0) and B(0,8) are two vertices of triangle OAB. a). What is the equation of the bisector of angle OAB. b). If E is the point of intersection of this bisector and the line through A and B,find the coordinates of E. Hence show that OA:OB = AE:EB -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : Find the area of a triangle whose vertices are (1, 3), (2, 4) and (5, 6). -Maths 9th

Last Answer : Let OR = \(x\) units (i) ΔQOR ~ ΔPAR⇒ \(rac{PA}{AR}\) = \(rac{QO}{OR}\) ⇒ \(rac{6}{x+4}\) = \(rac{3}{x}\)⇒ \(rac{x}{x+4}\) = \(rac{3}{6}\) ⇒ \(rac{x}{x+4}\) = \(rac{1}{2}\)⇒ 2\(x\) = \(x\) + 4 ⇒ \(x ... = \(rac{1}{2}\) (OQ + AP) x OA = \(rac{1}{2}\) (3+6) x 4 = \(rac{1}{2}\) x 9 x 4 = 18 sq. units.

Description : Find the area of triangle ABC whose vertices are A (-5, 7), B (-4, -5) and C (4, 5). -Maths 9th

Last Answer : the answer is 56.55u because height is 8.7 base is 13 cm

Description : If (0, 0) and (2, 0) are the two vertices of a triangle whose centroid is (1, 1), then the area of the triangle is: -Maths 9th

Last Answer : (b) \(\bigg(rac{2\sqrt{13}+20\sqrt2}{\sqrt{13}+\sqrt{17}+5\sqrt2},rac{8\sqrt{13}-6\sqrt{17}}{\sqrt{13}+\sqrt{17}+5\sqrt2}\bigg)\)Let A(x1, y1), B(x2, y2), C(x3, y3) be the vertices of ΔABC the ... +6)^2}\) = \(\sqrt{4+196}\) = \(\sqrt{200}=10\sqrt{2}\)∴ Co-ordinates of incentre of Δ ABC are

Description : The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to -Maths 9th

Last Answer : Solution of this question

Description : The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to -Maths 9th

Last Answer : Solution of this question

Description : An equilateral triangle is cut from its three vertices to form a regular hexagon. What is the percentage of area wasted? -Maths 9th

Last Answer : (c) 33.33%When an equilateral triangle is cut from its three vertices to form a regular hexagon then out of the 9 equilateral triangles that form ΔABC, three triangle, ΔADE, ΔFCG,ΔIHB are cut off and 6 remain in the ... to get the hexagon.∴ Area wasted = \(\bigg(rac{1}{3} imes100\bigg)\)% = 33.33%

Description : If vertices of a triangles are (1, k), (4, -3) and (-9, 7) and its area is 15 sq. units then find then the value of k. -Maths 9th

Last Answer : hope it helps if the vertices of a triangle are (1,k),(4,−3)(−9,7) area = 15 sq.units. find the value of k. Area of △ 21 [x1 (y2 −y3 )+x2 (y3 −y1 )+x3 (y1 −y2 )]=15 21 [1(−3−7)+ ... k+3)]=15 21 [(−10+28−4k−9k−27)]=15 −10+28−4k−9k−27=30 −10+28−13k−27=30 −13k=30+10+27−28 −13k=39 k=1339 k=−3 thank u

Description : a square is inscribed in an isosceles triangle so that the square and the triangle have one angle common. show that the vertex of the square opposite the vertex of the common angle bisect the hypotenuse. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : In a triangle, the ratio of the distance between a vertex and the orthocentre and the distance of the circumcentre from the side -Maths 9th

Last Answer : answer:

Description : A point lies on positive direction of X-axis at a distance of 7 units from the Y-axis. What are its coordinates ? -Maths 9th

Last Answer : Given, point lies on the positive direction of X-axis, so its y-coordinate will be zero and it is at a distance of 7 units from the X-axis, so its coordinates are (7, 0). If it lies on negative ... x-coordinate will be zero and its distance from X-axis is 7 units, so its coordinates are (0, -7).

Description : A point lies on positive direction of X-axis at a distance of 7 units from the Y-axis. What are its coordinates ? -Maths 9th

Last Answer : Given, point lies on the positive direction of X-axis, so its y-coordinate will be zero and it is at a distance of 7 units from the X-axis, so its coordinates are (7, 0). If it lies on negative ... x-coordinate will be zero and its distance from X-axis is 7 units, so its coordinates are (0, -7).

Description : Perpendiculars are drawn from the vertex of the obtuse angles of a rhombus to its sides. The length of each perpendicular is equal to a units. -Maths 9th

Last Answer : answer:

Description : Prove that the points (2, –2), (–2, 1) and (5, 2) are the vertices of a right angled triangle. Also find the length of the hypotenuse -Maths 9th

Last Answer : Let the co-ordinates of any point on the x-axis be (x, 0). Then distance between (x, 0) and (– 4, 8) is 10 units.⇒ \(\sqrt{(x+4)^2+(0-8)^2}\) = 10 ⇒ x2 + 8x + 16 + 64 = 100 ⇒ x2 + 8x – 20 = 0 ⇒ (x + 10) (x – 2) = 0 ⇒ x = –10 or 2 ∴ The required points are (– 10, 0) and (2, 0).

Description : The point A(0, 0), B(1, 7) and C(5, 1) are the vertices of a triangle. Find the length of the perpendicular from -Maths 9th

Last Answer : (b) 3x - y = 0 Given lines are 3x - y - 3 = 0 and 3x - y + 5 = 0. Line parallel to the given lines can be written as 3x - y + c = 0 ...(i) Let us taken a point, say ... 5c + 15 = - 3c + 15 ⇒ 8c = 0 ⇒ c = 0. Substituting c = 0 in (i), the required equation is 3x - y = 0.

Description : Write the coordinates of the vertices of a rectangle whose length and breadth are 5 and 3 units respectively, -Maths 9th

Last Answer : Given, length of a rectangle = 5 units and breadth of a rectangle = 3 units One vertex is at origin i.e., (0, 0) and one of the other vertices lies in III quadrant. So, the length of the rectangle is 5 ... negative,direction of y-axis and then vertex is C(0, -3). The fourth vertex B is (-5, - 3).

Description : Write the coordinates of the vertices of a rectangle whose length and breadth are 5 and 3 units respectively, -Maths 9th

Last Answer : Given, length of a rectangle = 5 units and breadth of a rectangle = 3 units One vertex is at origin i.e., (0, 0) and one of the other vertices lies in III quadrant. So, the length of the rectangle is 5 ... negative,direction of y-axis and then vertex is C(0, -3). The fourth vertex B is (-5, - 3).

Description : Three of the six vertices of a regular hexagon are chosen at random. The probability that the triangle with these vertices is equilateral equals : -Maths 9th

Last Answer : (c) \(rac{1}{10}\)Let S be the sample space.Then n(S) = Number of triangles formed by selecting any three vertices of 6 vertices of a regular hexagon= 6C3 = \(rac{6 imes5 imes4}{3 imes2}\) = 20.Let A : Event that the ... Required probability = \(rac{n(A)}{n(S)}\) = \(rac{2}{20}\) = \(rac{1}{10}\).

Description : Prove that the points (1, –1) ((-1/2),(1/2)) and (1, 2) are the vertices of an isosceles triangle. -Maths 9th

Last Answer : (x, y) is equidistant from the points (2, 1) and (1, –2) ⇒ Distance between (x, y) and (2, 1) = Distance between (x, y) and (1, –2)⇒ \(\sqrt{(x-2)^2+(y-1)^2}\) = \(\sqrt{(x-1)^2+(y+2)^2}\)⇒ x2 – 4x + 4 + y2 – 2y + 1 = x2 – 2x + 1 + y2 + 4y + 4⇒ – 4x + 2x – 2y – 4y = 0 ⇒ –2x – 6y = 0 ⇒ x + 3y = 0

Description : Find the co-ordinates of the circumcentre of the triangle whose vertices are (3, 0), (–1, –6) and (4, –1). Also find its circum-radius. -Maths 9th

Last Answer : Let A ≡ (2, - 2), B ≡ (-2, 1), C ≡ (5, 2 ). Then,AB = \(\sqrt{(-2-2)^2+(1+2)^2}\) = \(\sqrt{16+9}\) = \(\sqrt{25}\) = 5BC = \(\sqrt{(5+2)^2+(2-1)^2}\) = \(\sqrt{49+1}\) = \(\sqrt{50}\) = \( ... of ΔABC = \(rac{1}{2}\) x base x height = \(rac{1}{2}\) x AB x AC = \(rac{1}{2}\)x 5 x 5 = 12.5 sq. units.

Description : Find the co-ordinates of the in-centre of the triangle whose vertices are (–36, 7), (20, 7) and (0, –8). -Maths 9th

Last Answer : Let A(1, 2), B(0, -1) and C(2, -1) be the mid-points of the sides PQ, QR and RP of the triangle PQR. Let the co-ordinates of P, Q and R be (x1, y1), (x2, y2) and (x3 , y3) respectively. Then, by the mid- ... ordinates of centroid of ΔPQR = \(\bigg(rac{3+(-1)+1}{3},rac{2+2+(-4)}{3}\bigg)\) = (1, 0).

Description : Without using Pythagoras’ theorem, show that the points A (0, 4), B(1, 2) and C(3, 3) are the vertices of a right angle triangle. -Maths 9th

Last Answer : Slope (m) = \(rac{(y_2-y_1)}{(x_2-x_1)}\) = \(rac{6-2}{5-1}\) = \(rac{4}{4}\) = 1Also slope (m) = tan θ, where θ is the inclination of the line to the positive direction of the x-axis in the anticlockwise direction. tan θ = 1 ⇒ θ = tan –11 = 45º.

Description : What is the perimeter of the triangle with the vertices A(–4, 2), B(0, –1) and C(3, 3) ? -Maths 9th

Last Answer : The two given lines are ax + by + c1 = 0 and ax + by + c2 = 0. Any line parallel to these two lines and midway between them is ax + by + c = 0 ...(i) Putting x = 0, y = \(-rac{c}{b}\) is ... c1 = c - c2 ⇒ c = \(rac{c_1+c_2}{2}\)∴ Required equation is ax + by + \(rac{c_1+c_2}{2}\) = 0.

Description : The coordinates of the circumcentre of the triangle whose vertices are (8, 6), (8, –2) and (2, –2). -Maths 9th

Last Answer : (a) bx = ayGiven, AM = BM ⇒ AM2 = BM2 ⇒ [x – (a + b)]2 + [y – (b – a)]2 = [x – (a – b)]2 + (y –(a + b))2

Description : Let PS be the median of the triangle with vertices P(2, 2), Q(6, –1) and R(7, 3). -Maths 9th

Last Answer : (b) a = √2b Let D be the mid-point of BC. Then D ≡ \(\bigg(rac{a+0}{2},rac{0}{2}\bigg)\)i.e. \(\bigg(rac{a}{2},0\bigg)\)Let E be the mid-point of AC, thenE = \(\bigg(rac{a+0}{2},rac{0+b}{2}\bigg)\) = \(\bigg ... \(rac{b}{a}.\)∴ From (i), \(rac{-2b}{a}\) x \(rac{b}{a}\) = -1⇒ 2b2 = a2 ⇒ a = √2 .

Description : The medians AD and BE of the triangle with vertices A(0, b), B(0, 0) and C(a, 0) are mutually perpendicular if -Maths 9th

Last Answer : (c) \(rac{b+k}{f+h}\)Let the slope of the lin passing through the points (-k, h) and (b, - f) be m1. Then m1 = \(rac{-f-h}{b+k}\) = \(-\bigg(rac{f+h}{b+k}\bigg)\)\(\bigg[Slope = rac{y_2-y_1}{x_2-x_1}\bigg]\) ... \(-rac{1}{m_1}\)= \(rac{-1}{-\big(rac{f+h}{b+k}\big)}\) = \(\bigg(rac{b+k}{f+h}\bigg)\)

Description : The orthocentre of a triangle whose vertices are (0, 0), (3, 0) and (0, 4) is -Maths 9th

Last Answer : (c) 60ºSince p is the length of perpendicular from origin on the straight line ax + by - p = 0.p = \(rac{|a.0+b.0-p|}{\sqrt{a^2+b^2}}\)⇒ 1 = \(\sqrt{a^2+b^2}\) ⇒ 1 ... 60° + y sin 60° = p Hence required angle is 60°, which is the angle between the perpendicular and the positive direction of x-axis.

Description : The point which lies on Y-axis at a distance of 5 units in the negative direction of Y-axis is -Maths 9th

Last Answer : (C) Given the point lies on X-axis this shows that its ^-coordinate is zero. Also, it is at a distance of 5 units in negative direction of X-axis, so its y-coordinate” is negative.Hence, the required point is (0, – 5).

Description : The point which lies on Y-axis at a distance of 5 units in the negative direction of Y-axis is -Maths 9th

Last Answer : (C) Given the point lies on X-axis this shows that its ^-coordinate is zero. Also, it is at a distance of 5 units in negative direction of X-axis, so its y-coordinate” is negative.Hence, the required point is (0, – 5).

Description : If the perpendicular distance of a point P from the X-axis is 5 units and the foot of the perpendicular lies on the negative direction of X-axis, then the point P has -Maths 9th

Last Answer : (d) We know that, the perpendicular distance of a point from the X-axis gives y-coordinate of that point. Here, foot of perpendicular lies on the negative direction of X-axis, so perpendicular distance can be measure in II quadrant or III quadrant. Hence, the point P has y-coordinate = 5 or -5.

Description : If the perpendicular distance of a point P from the X-axis is 5 units and the foot of the perpendicular lies on the negative direction of X-axis, then the point P has -Maths 9th

Last Answer : (d) We know that, the perpendicular distance of a point from the X-axis gives y-coordinate of that point. Here, foot of perpendicular lies on the negative direction of X-axis, so perpendicular distance can be measure in II quadrant or III quadrant. Hence, the point P has y-coordinate = 5 or -5.

Description : Write the coordinates of two points on X-axis and two points on Y-axis which are at equal distances from the origin. Connect all these points and make them as vertices of quadrilateral. Name the quadrilateral thus formed. -Maths 9th

Last Answer : Let a be the equal distance from origin on both axes. Now, the coordinates of two points on equal distance 'a'on x-axis are Pla, 0) and R(-a, 0). Also, the coordinates of two points on equal distance 'a' on Y-axis are Q(0, a) and S(0, -a). Join all the four points on the graph.

Description : Find the point which lies on the line y x = -3 having abscissa 3. -Maths 9th

Last Answer : Solution :- When x=3 then y= -9,thus the point is (3,-9)

Description : The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it. -Maths 9th

Last Answer : Given = A △ABC in which D and E are the mid-points of side AB and AC respectively. DE is joined . To Prove : DE || BC and DE = 1 / 2 BC. Const. : Produce the line segment DE to F , such that DE = ... of ||gm are equal and parallel] Also, DE = EF [by construction] Hence, DE || BC and DE = 1 / 2 BC

Description : The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it. -Maths 9th

Last Answer : Given = A △ABC in which D and E are the mid-points of side AB and AC respectively. DE is joined . To Prove : DE || BC and DE = 1 / 2 BC. Const. : Produce the line segment DE to F , such that DE = ... of ||gm are equal and parallel] Also, DE = EF [by construction] Hence, DE || BC and DE = 1 / 2 BC

Description : The angle A lies in the third quadrant and it satisfies the equation 4 (sin^2x + cos x) = 1. What is the measure of angle A? -Maths 9th

Last Answer : answer:

Description : Find the area of a parallelogram given in the figure. Also, find the length of the altitude from vertex A on the side DC. -Maths 9th

Last Answer : Weknowthatthediagonalofaparallelogram(∥gm)dividesitintotwocongruenttriangles.SoAreaof∥gmABCD=2 Areaof△BCD.AccordingtoHeron′sformulathearea(A)oftrianglewithsidesa,b&cisgivenasA=2[s(s−a)(s−b) ... 90=180Areaof∥gm=base heightHeightofaltitudefromvertexAonsideCDoftheof∥gm=baseCDareaof∥gmABCD =12180 =15cm

Description : Find the area of a parallelogram given in the figure. Also, find the length of the altitude from vertex A on the side DC. -Maths 9th

Last Answer : =3 x 3 x 5 x 2 cm2 Area of parallelogram ABCD = 2 x 90 = 180 cm2 (ii) Let altitude of a parallelogram be h. Also, area of parallelogram ABCD =Base x Altitude ⇒ 180 = DC x h [from Eq. (ii)] ... h ∴ h = 180/12= 15 cm Hence, the area of parallelogram is 180 cm2 and the length of altitude is 15 cm.

Description : Find the area of an isosceles triangle, whose equal sides are of length 15 cm each and third side is 12 cm. -Maths 9th

Last Answer : We have, Three sides13cm,13cm and 20cm. By using Heron's formula We need to get the semi-perimeter s= 2 a+b+c​ = 2 13+13+20​ = 2 46​ =23 Now, put the heron's formula, s= s(s−a)(s−b)(s−c)​ = 23(23−13)(23−13)(23−20)​ = 23×10×10×3​ =10 23×3​ =83.07cm 2

Description : In-centre of a triangle lies in the interior of -Maths 9th

Last Answer : answer:

Description : X and y are points on the side LN of the triangle LMN , such that LX = XY = YN . Through X, a line is drawn parallel to LM to meet MN at Z. -Maths 9th

Last Answer : Here, △XZM and △XZL are on the same base (XZ) and lie between the same parallels (XZ || LM). ∴ ar(△XZL) = ar( △XZM) Adding ar(△XZY) on both sides , we have ar(△XZL) + ar(△XZY) = ar(△XZM) + ar(△XZY) ⇒ ar(△LZY) = ar(quad.MZYX)

Description : X and y are points on the side LN of the triangle LMN , such that LX = XY = YN . Through X, a line is drawn parallel to LM to meet MN at Z. -Maths 9th

Last Answer : Here, △XZM and △XZL are on the same base (XZ) and lie between the same parallels (XZ || LM). ∴ ar(△XZL) = ar( △XZM) Adding ar(△XZY) on both sides , we have ar(△XZL) + ar(△XZY) = ar(△XZM) + ar(△XZY) ⇒ ar(△LZY) = ar(quad.MZYX)