If the points A(1, 2), B(2, 4) and C(3, a) are collinear, what is the length of BC ? -Maths 9th

1 Answer

Answer :

(c) √5 units Area of Δ ABC = 0 for collinearity of A, B, C.⇒ \(rac{1}{2}\)[1(4 – a) + 2(a – 2) + 3(2 – 4)] = 0 ⇒ 4 – a + 2a – 4 + 6 – 12 = 0 ⇒ a – 6 = 0 ⇒ a = 6. ∴ Point C ≡ (3, 6)⇒ BC = \(\sqrt{(3-2)^2+(6-4)^2}\) = \(\sqrt{1+4}\) = √5 units .

Related questions

Description : Plot the following points and check whether they are collinear or not -Maths 9th

Last Answer : (i) Plotting the points P (1, 3), Q (-1, -1) and R (-2, - 3) on the graph paper and join these points, we get a straight line. Hence, these points are collinear. (ii) Plotting the points ... 6 (5, 5)on the graph paper and join these points, we get a straight line. Hence, given points are collinear.

Description : Plot the following points and check whether they are collinear or not -Maths 9th

Last Answer : (i) Plotting the points P (1, 3), Q (-1, -1) and R (-2, - 3) on the graph paper and join these points, we get a straight line. Hence, these points are collinear. (ii) Plotting the points ... 6 (5, 5)on the graph paper and join these points, we get a straight line. Hence, given points are collinear.

Description : Plot the following points and check whether they are collinear or not: -Maths 9th

Last Answer : Solution :-

Description : There are 18 points in a plane such that no three of them are in the same line except five points which are collinear. -Maths 9th

Last Answer : answer:

Description : Show that the points (a, b + c), (b, c + a), (c, a + b) are collinear. -Maths 9th

Last Answer : Let A(x1, y1) ≡ (1, 3), B(x2, y2) ≡ (2, 4), C(x3, y3) ≡ (5, 6) be the vertices of ΔABCArea of ΔABC = \(rac{1}{2}\) |{\(x_1\)(y2 – y3) + \(x_2\)(y3 – y1) + \(x​​_3\)(y1 – y2)}|= \(rac{1}{2}\) |{1(4 – 6) + 2(6 – 3) + 5(3 – 4)}| = \(rac{1}{2}\) |{–2 + 6 – 5}| = \(rac{1}{2}\) sq. units.

Description : If the points (x, 1), (1, 2) and (0, y + 1) are collinear show that -Maths 9th

Last Answer : Two lines are parallel if their slopes are equal∴ \(rac{0-(-8)}{3-(-5)}\) = \(rac{a-3}{4-6}\) ⇒ \(rac{8}{8}\) = \(rac{a-3}{-2}\) ⇒ a – 3 = –2 ⇒ a = 1.

Description : If the points A(1, 2), B(0, 0) and C(a, b) are collinear, then -Maths 9th

Last Answer : (a) - 2For three points to be collinear, area of the triangle formed by the three points should be equal to zero, i.e.\(rac{1}{2}\) [k(3k - 1) + 2k(1 - 2k) + 3(2k - 3k)] = 0⇒ \(rac{1}{2}\) [3k2 - k + ... = 0 or -2 Neglecting k = 0, as then (k, 2k) and (2k, 3k) will be the same point, we take k = -2.

Description : If the three points (k, 2k), (2k, 3k) and (3, 1) are collinear then k is equal to -Maths 9th

Last Answer : (d) 3Let (x, y) be the co-ordinates of the third vertex of the triangle. Then\(rac{0+2+x}{3}\) = 1 and \(rac{0+0+y}{3}\) = 1⇒ 2 + \(x\) = 3 and y = 3 ⇒ \(x\) = 1, y = 3. ∴ Co-ordinates of vertices of the triangle ... - y3) + x2 (y2 - y3) + x3(y1 - y2)]= \(rac{1}{2}\) [0+6+0] = \(rac{6}{2}\) = 3.

Description : If the points with the co-ordinates {a, ma}, {b, (m + 1)b}, {c, (m + 2)c} are collinear, then which of the following is correct ? -Maths 9th

Last Answer : (d) (7, -2)Let the co-ordinates of R be (x, y). As can be easily seen, it is a point of external division Also, PR = 2QR⇒ R divides the join of P and Q externally in the ratio 2:1. ∴ x = \(rac{2 imes2-1 imes-3}{2-1}\), ... }{2-1}\)⇒ x = 4 + 3 = 7 and y = 2 - 4 = -2. ∴ Co-ordinates of R are (7, -2).

Description : Find the relation between x and y if points (2, 1), (x, y) and (7, 5) are collinear. -Maths 9th

Last Answer : answer:

Description : In triangle ABC, D and E are mid-points of the sides BC and AC respectively. Find the length of DE. Prove that DE = 1/2AB. -Maths 9th

Last Answer : First Find the points D and E by midpoint formula. (x₂+x₁/2 , y₂+y₁/2) For DE=1/2AB In ΔsCED and CAB ∠ECD=∠ACB and the ratio of the side containing the angle is same i.e, CD=1/2BC ⇒CD/BC=1/2 EC=1/2AC ⇒EC/AC=1/2 ∴,ΔCED~ΔCAB hence the ratio of their corresponding sides will be equal, DE=1/2AB

Description : Two circles intersect at A and B. AC and AD are respectively the diameters of the circles. Prove that C, B and D are collinear. -Maths 9th

Last Answer : Join CB, BD and AB, Since, AC is a diameter of the circle with centre O. ∴ ∠ABC = 90° [angle in semi circle] ---- (i) Also, AD is a diameter of the circle with center O . ∴ ∠ABD = 90° [angle in ... ⇒ ∠ABC + ∠ABD = 180° So. CBD is a straight line. Hence C, B and D are collinear . Hence proved.

Description : Two circles intersect at A and B. AC and AD are respectively the diameters of the circles. Prove that C, B and D are collinear. -Maths 9th

Last Answer : Join CB, BD and AB, Since, AC is a diameter of the circle with centre O. ∴ ∠ABC = 90° [angle in semi circle] ---- (i) Also, AD is a diameter of the circle with center O . ∴ ∠ABD = 90° [angle in ... ⇒ ∠ABC + ∠ABD = 180° So. CBD is a straight line. Hence C, B and D are collinear . Hence proved.

Description : 3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Construction, Join AC and BD. To Prove, PQRS is a rhombus. Proof: In ΔABC P and Q ... (ii), (iii), (iv) and (v), PQ = QR = SR = PS So, PQRS is a rhombus. Hence Proved

Description : 2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. To Prove, PQRS is a rectangle. Construction, Join AC and BD. Proof: In ΔDRS and ... , In PQRS, RS = PQ and RQ = SP from (i) and (ii) ∠Q = 90° , PQRS is a rectangle.

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. -Maths 9th

Last Answer : Since the segment joining the mid points of any two sides of a triangle is half the third side and parallel to it. DE = 1 / 2 AC ⇒ DE = AF = CF EF = 1 / 2 AB ⇒ EF = AD = BD DF = 1 ... △DEF ≅ △AFD Thus, △DEF ≅ △CFE ≅ △BDE ≅ △AFD Hence, △ABC is divided into four congruent triangles.

Description : In the fig, D, E and F are, respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. -Maths 9th

Last Answer : Since line segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively. ⇒ DE = 1 / 2 AB --- (i) E and F are the mid - ... CA ⇒ DE = EF = FD [using (i) , (ii) , (iii) ] Hence, DEF is an equilateral triangle .

Description : ABCD is a square. E and F are respectively the mid - points of BC and CD. If R is the mid point of EF. -Maths 9th

Last Answer : Since R is the mid point of EF . ∴ AR is the median in △AEF. As, a median of a triangle divides it into two triangles of equal area . ∴ ar(△AER) = ar(△AFR)

Description : On plotting the points 0(0, 0), A(3, 0), 5(3, 4), C(0, 4) and joining OA, AB, BC and CO. -Maths 9th

Last Answer : (b) Here, point 0 (0, 0) is the origin. A(3, 0) lies on positive direction of X-axis, B (3, 4) lies in 1st quadrant and C (0, 4) lines on positive direction of Y-axis. On joining OA AB, BC and CO the figure obtained is a rectangle.

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. -Maths 9th

Last Answer : According to question the mid-points of the non-parallel sides AD and BC of a trapezium ABCD.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : ABCD is a square. E and F are respectively the mid-points of BC and CD. -Maths 9th

Last Answer : According to question prove that ar (ΔAER) = ar (ΔAFR).

Description : In figure X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. -Maths 9th

Last Answer : Given X and Y are the mid-points of AC and AB respectively. Also, QP|| BC and CYQ, BXP are straight lines. To prove ar (ΔABP) = ar (ΔACQ) Proof Since, X and Y are the mid-points of AC and AB respectively. So, ... ar (ΔBYX) + ar (XYAP) = ar (ΔCXY) + ar (YXAQ) ⇒ ar (ΔABP) = ar (ΔACQ) Hence proved.

Description : If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is -Maths 9th

Last Answer : According to question the radius of the circle passing through the points A, B and C .

Description : A, B and C are three points on a circle. Prove that the perpendicular bisectors of AB, BC and CA are concurrent. -Maths 9th

Last Answer : According to question prove that the perpendicular bisectors of AB, BC and CA are concurrent.

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. -Maths 9th

Last Answer : Since the segment joining the mid points of any two sides of a triangle is half the third side and parallel to it. DE = 1 / 2 AC ⇒ DE = AF = CF EF = 1 / 2 AB ⇒ EF = AD = BD DF = 1 ... △DEF ≅ △AFD Thus, △DEF ≅ △CFE ≅ △BDE ≅ △AFD Hence, △ABC is divided into four congruent triangles.

Description : In the fig, D, E and F are, respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. -Maths 9th

Last Answer : Since line segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively. ⇒ DE = 1 / 2 AB --- (i) E and F are the mid - ... CA ⇒ DE = EF = FD [using (i) , (ii) , (iii) ] Hence, DEF is an equilateral triangle .

Description : ABCD is a square. E and F are respectively the mid - points of BC and CD. If R is the mid point of EF. -Maths 9th

Last Answer : Since R is the mid point of EF . ∴ AR is the median in △AEF. As, a median of a triangle divides it into two triangles of equal area . ∴ ar(△AER) = ar(△AFR)

Description : On plotting the points 0(0, 0), A(3, 0), 5(3, 4), C(0, 4) and joining OA, AB, BC and CO. -Maths 9th

Last Answer : (b) Here, point 0 (0, 0) is the origin. A(3, 0) lies on positive direction of X-axis, B (3, 4) lies in 1st quadrant and C (0, 4) lines on positive direction of Y-axis. On joining OA AB, BC and CO the figure obtained is a rectangle.

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. -Maths 9th

Last Answer : According to question the mid-points of the non-parallel sides AD and BC of a trapezium ABCD.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : ABCD is a square. E and F are respectively the mid-points of BC and CD. -Maths 9th

Last Answer : According to question prove that ar (ΔAER) = ar (ΔAFR).

Description : In figure X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. -Maths 9th

Last Answer : Given X and Y are the mid-points of AC and AB respectively. Also, QP|| BC and CYQ, BXP are straight lines. To prove ar (ΔABP) = ar (ΔACQ) Proof Since, X and Y are the mid-points of AC and AB respectively. So, ... ar (ΔBYX) + ar (XYAP) = ar (ΔCXY) + ar (YXAQ) ⇒ ar (ΔABP) = ar (ΔACQ) Hence proved.

Description : If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is -Maths 9th

Last Answer : According to question the radius of the circle passing through the points A, B and C .

Description : A, B and C are three points on a circle. Prove that the perpendicular bisectors of AB, BC and CA are concurrent. -Maths 9th

Last Answer : According to question prove that the perpendicular bisectors of AB, BC and CA are concurrent.

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : if A,Band c are three points on a line and B lies between A and C then prove that AB+BC=AC -Maths 9th

Last Answer : Since complete line is AC and B is point on it. therefore, AC is divide into 2 parts AB&BC. therefore, AC=AB+BC

Description : if A,Band c are three points on a line and B lies between A and C then prove that AB+BC=AC -Maths 9th

Last Answer : AB=AC-BC BC =AC-AB AB+BC=AB HENCE PROVED

Description : D,E and F are the mid-points of the sides BC,CA and AB,respectively of an equilateral triangle ABC.Show that △DEF is also an euilateral triangle -Maths 9th

Last Answer : Solution :-

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF||AB and EF = 1/2 (AB +CD). -Maths 9th

Last Answer : Solution :-

Description : ABCD is a rectangle and p q r s are the mid points of the side AB BC CD AND DA respectively. Show that the quadrilateral PQRS is a rhombus -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : In the adjoining figure, points A, B, C and D lie on a circle. AD = 24 and BC = 12. -Maths 9th

Last Answer : AD = 24, BC = 12. In ΔCBE and ΔADE, ∠CBA = ∠CDA, ∠BCE = ∠DAE (Angles in the same segment are equal) ∠BEC = ∠DEA (vertical opposite angles are equal) ⇒ ΔBCE and ΔDEA are similar Δs with sides in the ratio 1 : 2. ∴ Ratio of areas = Ratio of square of sides = 12 : 22 = 1 : 4

Description : Let O be any point inside a triangle ABC. Let L, M and N be the points on AB, BC and CA respectively, -Maths 9th

Last Answer : answer:

Description : Let ABC be a triangle. Let D, E, F be points respectively on segments BC, CA, AB such that AD, BE and CF concur at point K. -Maths 9th

Last Answer : answer: