The vertices A(4, 5), B(7, 6), C(4, 3) and D(1, 2) from the quadrilateral ABCD whose special name is -Maths 9th

1 Answer

Answer :

(a) (5, 2)Let A(8, 6) , B(8, –2) and C(2, –2) be the vertices of the given triangle and P(x, y) be the circum-centre of this triangle. Then, PA2 = PB2 = PC2 Now, PA2 = PB2 ⇒ (x – 8)2 + (y – 6)2 = (x – 8) + (y + 2)2 ⇒ x2 – 16x + 64 + y2 – 12y + 36 = x2 – 16x + 64 + y2 + 4y + 4 ⇒ 16y = 32 ⇒ y = 2. Now, PB2 = PC2 ⇒ (x – 8)2 + (y + 2)2 = (x – 2)2 + (y + 2)2 ⇒ x2 – 16x + 64 + y2 + 4y + 4 = x2 – 4x + 4 + y2 + 4y + 4 ⇒ 12x = 60 ⇒ x = 5. ∴ Co-ordinates of the circumcentre are (5, 2).

Related questions

Description : Name the quadrilateral ABCD, the coordinates of whose vertices are A(3, 5), B(1, 1), C(5, 3) and D(7, 7). -Maths 9th

Last Answer : (b) Equilateral, \(2\sqrt3a^2\) sq. unitsLet A(a, a), B(-a, -a) and C \((-\sqrt3a,\sqrt3a)\) be the vertices of ΔABC. Then,AB = \(\sqrt{(a+a)^2+(a+a)^2}\) = \(\sqrt{4a^2+4a^2}\) = \(\sqrt{8a^2}\) = \( ... 4}\) (side)2 = \(rac{\sqrt3}{4}\) x (\(2\sqrt2a\))2= \(rac{\sqrt3}{4}\) x 8a2 = \(2\sqrt3a^2\).

Description : Find the area of quadrilateral ABCD whose vertices are A (1, 0), B (5, 3), C (2, 7), D ( -2, 4) -Maths 9th

Last Answer : answer:

Description : Find the area of the quadrilateral whose vertices are (3, 4), (0, 5), (2, –1) and (3, –2). -Maths 9th

Last Answer : Let A(-36, 7), B(20, 7) and C(0, -8) be the vertices of the given triangle.Then, a = BC = \(\sqrt{(0-20)^2+(-8-7)^2}\) = \(\sqrt{400+225}\) = \(\sqrt{625}\) = 25b = AC =\(\sqrt{(0-36)^2+(-8-7 ... (rac{-900+780}{120},rac{175+273-448}{120}\bigg)\) = \(\bigg(rac{-120}{120},rac{0}{120}\bigg)\) = (-1, 0)

Description : ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then ABCD -Maths 9th

Last Answer : (d) Here, ABCD need not be any of rectangle, rhombus and parallelogram because if ABCD is a square, then its diagonal AC also divides it into two parts which are equal in area.

Description : ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then ABCD -Maths 9th

Last Answer : (d) Here, ABCD need not be any of rectangle, rhombus and parallelogram because if ABCD is a square, then its diagonal AC also divides it into two parts which are equal in area.

Description : If angles A, B,C and D of the quadrilateral ABCD, taken in order are in the ratio 3 :7:6:4, then ABCD is a -Maths 9th

Last Answer : (c) Given, ratio of angles of quadrilateral ABCD is 3 : 7 : 6 : 4. Let angles of quadrilateral ABCD be 3x, 7x, 6x and 4x, respectively. We know that, sum of all angles of a quadrilateral is 360°. 3x + 7x + 6x + 4x = 360° => 20x = 360° => x=360°/20° = 18°

Description : If angles A, B,C and D of the quadrilateral ABCD, taken in order are in the ratio 3 :7:6:4, then ABCD is a -Maths 9th

Last Answer : (c) Given, ratio of angles of quadrilateral ABCD is 3 : 7 : 6 : 4. Let angles of quadrilateral ABCD be 3x, 7x, 6x and 4x, respectively. We know that, sum of all angles of a quadrilateral is 360°. 3x + 7x + 6x + 4x = 360° => 20x = 360° => x=360°/20° = 18°

Description : The sides of a quadrilateral ABCD are 6 cm, 8 cm, 12 cm and 14 cm (taken in order), respectively and the angle between the first two sides is a right angle. -Maths 9th

Last Answer : Given ABCD is a quadrilateral having sides AB=6cm, BC=8cm, CD=12cm and DA=14 cm. Now. Join AC. We have, ABC is a right angled triangle at B. Now, AC2=AB2+BC2 [by Pythagoras theorem]Now, AC2=AB2+BC2 ... =24(1+6-√)cm2=24+246=24(1+6)cm2 Hence, the area of quadrilateral is 241+6-√−−−−−−√cm2241+6cm2 .

Description : The sides of a quadrilateral ABCD are 6 cm, 8 cm, 12 cm and 14 cm (taken in order), respectively and the angle between the first two sides is a right angle. -Maths 9th

Last Answer : Given ABCD is a quadrilateral having sides AB = 6 cm, BC = 8 cm, CD = 12 cm and DA = 14 cm. Now, join AC.

Description : In ΔABC and ΔDEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively (see Fig. 8.22). Show that (i) quadrilateral ABED is a parallelogram ( ... CF and AD = CF (iv) quadrilateral ACFD is a parallelogram (v) AC = DF (vi) ΔABC ≅ ΔDEF. -Maths 9th

Last Answer : . Solution: (i) AB = DE and AB || DE (Given) Two opposite sides of a quadrilateral are equal and parallel to each other. Thus, quadrilateral ABED is a parallelogram (ii) Again BC = EF and BC || EF ... (Given) BC = EF (Given) AC = DF (Opposite sides of a parallelogram) , ΔABC ≅ ΔDEF [SSS congruency]

Description : If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral,prove that it is a rectangle. -Maths 9th

Last Answer : Solution :- Let, ABCD be a cyclic quadrilateral such that its diagonal AC and BD are the diameters of the circle though the vertices A,B,C and D. As angle in a semi-circle is 900 ∴ ∠ABC = 900 and ∠ADC = 900 ∠DAB = 900 ... Hence, ABCD is a rectangle.

Description : Write the coordinates of two points on X-axis and two points on Y-axis which are at equal distances from the origin. Connect all these points and make them as vertices of quadrilateral. Name the quadrilateral thus formed. -Maths 9th

Last Answer : Let a be the equal distance from origin on both axes. Now, the coordinates of two points on equal distance 'a'on x-axis are Pla, 0) and R(-a, 0). Also, the coordinates of two points on equal distance 'a' on Y-axis are Q(0, a) and S(0, -a). Join all the four points on the graph.

Description : Points A(5, 3), B(-2, 3) and 0(5, – 4) are three vertices of a square ABCD. -Maths 9th

Last Answer : The graph obtained by plotting the points A, B and C and D is given below. Take a point C on the graph such that ABCD is a square i.e., all sides AB, BC, CD, and AD are equal. So, abscissa of C should be ... of C should be equal to ordinate of D i.e., -4. Hence, the coordinates of C are (-2, - 4).

Description : Points A(5, 3), B(-2, 3) and 0(5, – 4) are three vertices of a square ABCD. -Maths 9th

Last Answer : The graph obtained by plotting the points A, B and C and D is given below. Take a point C on the graph such that ABCD is a square i.e., all sides AB, BC, CD, and AD are equal. So, abscissa of C should be ... of C should be equal to ordinate of D i.e., -4. Hence, the coordinates of C are (-2, - 4).

Description : If the points A(a, –11), B(5, b), C(2, 15) and D(1, 1) are the vertices of a parallelogram ABCD, find the values of a and b. -Maths 9th

Last Answer : Let the x-axis divide the line joining the points (-2, 5) and (1, -9) in the ratio k : 1. Let the point of division on x-axis is P Then,\(x\) = \(rac{k-2}{k+1}\), y = \(rac{-9k+ ... (rac{5}{9}\)k being positive, the division is internal. ∴ x-axis divides the given line internally in the ratio 5 : 9.

Description : (–2, –1) and (4, –5) are the co-ordinates of vertices B and D respectively of rhombus ABCD. Find the equation of the diagonal AC. -Maths 9th

Last Answer : 3\(x\) - 2y + 5 = 0 ⇒ -2y = -3\(x\) - 5 ⇒ y = \(rac{3}{2}\)\(x\) + \(rac{5}{2}\)On comparing with y = m\(x\) + c, we see that slope of given line = \(rac{3}{2}\)As the required line is perpendicular to the given line, ... - 4)⇒ 3(y - 5) = - 2\(x\) + 8 ⇒ 3y - 15 = -2\(x\) + 8 ⇒ 3y + 2\(x\) - 23 = 0

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that (i) ΔAPB ≅ ΔCQD (ii) AP = CQ -Maths 9th

Last Answer : Q Solution: (i) In ΔAPB and ΔCQD, ∠ABP = ∠CDQ (Alternate interior angles) ∠APB = ∠CQD (= 90o as AP and CQ are perpendiculars) AB = CD (ABCD is a parallelogram) , ΔAPB ≅ ΔCQD [AAS congruency] (ii) As ΔAPB ≅ ΔCQD. , AP = CQ [CPCT]

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . -Maths 9th

Last Answer : In gm ABCD , AP and CQ are perpendicular from the vertices A and C on diagonal BD. Show that : (i) AAPB ≅ ACQD (ii) AP = CQ .

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . -Maths 9th

Last Answer : In gm ABCD , AP and CQ are perpendicular from the vertices A and C on diagonal BD. Show that : (i) AAPB ≅ ACQD (ii) AP = CQ .

Description : A point O in the interior of a rectangle ABCD is joined with each of the vertices A, B, C and D. Then, show that OA^2 + OC^2 = OB^2 + OD^2. -Maths 9th

Last Answer : answer:

Description : ABCD is a trapezium where AB and CD are non-parallel sides. If the vertices A, B, C and D are concyclic, then -Maths 9th

Last Answer : answer:

Description : If the area of the quadrilateral whose angular points A, B, C, D taken in order are (1, 2), (–5, 6), (7, – 4) and (–2, k) be zero, -Maths 9th

Last Answer : (d) 1 : 16Gvien \(rac{AD}{AB}=rac{1}{4}\) ⇒ \(rac{AD}{DB}=rac{1}{3}\),i.e., D divides AB internally in the ratio 1 : 3. ∴ Co-odinates of D are\(\bigg(rac{1+12}{1+3},rac{5+18}{1+3}\bigg)\)i.e.,\(\ ... {Area of}\,\Delta{ADE}}{ ext{Area of}\,\Delta{ABC}}\) = \(rac{rac{15}{32}}{rac{15}{2}}\) = 1 : 16.

Description : Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm. -Maths 9th

Last Answer : Given a quadrilateral ABCD with AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm. For ∆ABC, a = AB = 3 cm, b = BC = 4 cm and c = AC = 5 cm Now, area of quadrilateral ABCD = area of ∆ABC + area of ∆ACD = 6 cm2 + 9.2 cm2 = 15.2 cm2 (approx.)

Description : 3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Construction, Join AC and BD. To Prove, PQRS is a rhombus. Proof: In ΔABC P and Q ... (ii), (iii), (iv) and (v), PQ = QR = SR = PS So, PQRS is a rhombus. Hence Proved

Description : 2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. To Prove, PQRS is a rectangle. Construction, Join AC and BD. Proof: In ΔDRS and ... , In PQRS, RS = PQ and RQ = SP from (i) and (ii) ∠Q = 90° , PQRS is a rectangle.

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : The diagonals of a quadrilateral ABCD are perpendicular to each other. -Maths 9th

Last Answer : Given: A quadrilateral ABCD whose diagonals AC and BD are perpendicular to each other at O. P,Q,R and S are mid points of side AB, BC, CD and DA respectively are joined are formed quadrilateral PQRS. To ... 90° Thus, PQRS is a parallelogram whose one angle is 90°. ∴ PQRS is a rectangle.

Description : In quadrilateral ABCD of the given figure, X and Y are points on diagonal AC such that AX = CY and BXDY ls a parallelogram. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : BD is one of the diagonals of a quadrilateral ABCD. AM and CN are the perpendiculars from A and C respectively on BD . -Maths 9th

Last Answer : We know that area of a triangle = 1/2 × base × altitude ∴ ar(△ABD) = 1/2 × BD × AM and ar(△BCD) = 1/2 BD × CN Now, ar(quad. ABCD) = ar(△ABD) + ar(△BCD) = 1/2 × BD × AM + 1/2 × BD × CN = 1/2 × BD × (AM + CN)

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only, if -Maths 9th

Last Answer : According to question mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only.

Description : Opposite angles of a quadrilateral ABCD are equal. If AB = 4 cm, determine CD. -Maths 9th

Last Answer : Given, opposite angles of a quadrilateral are equal. So, ABCD is a parallelogram and we know that, in a parallelogram opposite sides are also equal. ∴ CD = AB = 4cm

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is such a quadrilateral that A is the centre of the circle passing through B, C and D. -Maths 9th

Last Answer : According to question p rove that ∠CBD +∠CDB = 1/2 ∠BAD.

Description : If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q, prove that PQ is a diameter of the circle. -Maths 9th

Last Answer : Given, ABCD is a cyclic quadrilateral. DP and QB are the bisectors of ∠D and ∠B, respectively. To prove PQ is the diameter of a circle. Construction Join QD and QC.

Description : The diagonals of a quadrilateral ABCD are perpendicular to each other. -Maths 9th

Last Answer : Given: A quadrilateral ABCD whose diagonals AC and BD are perpendicular to each other at O. P,Q,R and S are mid points of side AB, BC, CD and DA respectively are joined are formed quadrilateral PQRS. To ... 90° Thus, PQRS is a parallelogram whose one angle is 90°. ∴ PQRS is a rectangle.

Description : In quadrilateral ABCD of the given figure, X and Y are points on diagonal AC such that AX = CY and BXDY ls a parallelogram. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : BD is one of the diagonals of a quadrilateral ABCD. AM and CN are the perpendiculars from A and C respectively on BD . -Maths 9th

Last Answer : We know that area of a triangle = 1/2 × base × altitude ∴ ar(△ABD) = 1/2 × BD × AM and ar(△BCD) = 1/2 BD × CN Now, ar(quad. ABCD) = ar(△ABD) + ar(△BCD) = 1/2 × BD × AM + 1/2 × BD × CN = 1/2 × BD × (AM + CN)

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only, if -Maths 9th

Last Answer : According to question mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only.

Description : Opposite angles of a quadrilateral ABCD are equal. If AB = 4 cm, determine CD. -Maths 9th

Last Answer : Given, opposite angles of a quadrilateral are equal. So, ABCD is a parallelogram and we know that, in a parallelogram opposite sides are also equal. ∴ CD = AB = 4cm

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is such a quadrilateral that A is the centre of the circle passing through B, C and D. -Maths 9th

Last Answer : According to question p rove that ∠CBD +∠CDB = 1/2 ∠BAD.

Description : If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q, prove that PQ is a diameter of the circle. -Maths 9th

Last Answer : Given, ABCD is a cyclic quadrilateral. DP and QB are the bisectors of ∠D and ∠B, respectively. To prove PQ is the diameter of a circle. Construction Join QD and QC.

Description : The side of a quadrilateral ABCD are 6cm,12cm,8cm,12cm,4cm (taken in oder) respectively and the angle between the 1st two side is a right angle. Find area of tiresome by herons fourmula -Maths 9th

Last Answer : Given ABCD is a quadrilateral having sides AB=6cm, BC=8cm, CD=12cm and DA=14 cm. Now. Join AC. We have, ABC is a right angled triangle at B. Now, AC2 =AB2 +BC2 [by Pythagoras theorem] Now, AC2=AB2 ... 1+6-√)cm2 =24+246=24(1+6)cm2 Hence, the area of quadrilateral is 241+6-√−−−−−−√cm2 241+6cm2 .

Description : The side of a quadrilateral ABCD are 6cm,12cm,8cm,12cm,4cm (taken in oder) respectively and the angle between the 1st two side is a right angle. Find area of tiresome by herons fourmula -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : Show that in a quadrilateral ABCD,AB + BC + CD + DA > AC + BD. -Maths 9th

Last Answer : Solution :-

Description : Name the quadrilateral formed by joining the mid - points of the sides of any quadrilateral ABCD. -Maths 9th

Last Answer : Solution :- Parallelogram.