What are the co-ordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 ? -Maths 9th

1 Answer

Answer :

(d) 2x + 9y + 7 = 0PS being the median of ΔPQR, S is the mid-point of QR, i.e., Coordinates of S ≡ \(\bigg(rac{6+7}{2},rac{-1+3}{2}\bigg)\) = \(\bigg(rac{13}{2},1\bigg)\)Slope of line parallel to PS = Slope of PS= \(rac{1-2}{rac{13}{2}-2}\) = \(rac{-1}{rac{9}{2}}\) = \(rac{-2}{9}.\)∴ Equation of a line parallel to PS passing through the point (1, –1) is(y + 1) = \(rac{-2}{9}\)(x – 1), i.e., 9y + 9 = – 2x + 2 ⇒ 2x + 9y + 7 = 0.

Related questions

Description : The line x – 4y = 6 is the perpendicular bisector of the segment AB and the co-ordinates of B are (1, 3). Find the co-ordinates of A. -Maths 9th

Last Answer : Co-ordinates of A are \(\bigg(rac{3 imes9+1 imes5}{3+1},rac{3 imes6+1 imes-2}{3+1}\bigg)\) = \(\bigg(rac{32}{4},rac{16}{4}\bigg)\), i.e. (8, 4)Now, \(x\) - 3y + 4 = 0 ⇒ -3y = -\(x\) - 4 ⇒ y = \(rac{x}{3}+rac{4} ... 8) [Using, y - y1 = m (x - x1)]⇒ 3y - 12 = \(x\) - 8 ⇒ 3y - \(x\) = 4.

Description : What is the equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinates axes whose sum is –1 ? -Maths 9th

Last Answer : Diagonals of a rhombus bisect each other at right angles ⇒ Co-ordinates of mid-points of AC and BD are equal∴ 0 = \(\bigg(rac{4+(-2)}{2},rac{-5+(-1)}{2}\bigg)\) = (1, -3)Slope of BD = \(rac{-5+1}{4+2}\) = \(rac{-4}{6}\) ... (rac{3}{2}\) isy + 3 = \(rac{3}{2}\) (x - 1)⇒ 2y + 6 = 3x - 3 ⇒ 2y = 3x - 9.

Description : Find the co-ordinates of that point on the curve`y^(2)=x^(2)(1-x)` at which the tangent drawn is perpendicular to X-axis.

Last Answer : Find the co-ordinates of that point on the curve`y^(2)=x^(2)(1-x)` at which the tangent drawn is perpendicular to X-axis.

Description : Find the co-ordinates of the points on the x-axis which are at a distance of 10 units from the point (– 4, 8)? -Maths 9th

Last Answer : (a) Internal division: If P(x, y) divides the line segment formed by the joining of the points A (x1, y1) and B (x2, y2) internally in the ratio m1 : m2. Then\(x=rac{m_1x_2+m_2x_1}{m_1+m_2}\) and \(y=rac ... : 1, the co-ordinates of the mid-point are \(\bigg(rac{x_1+x_2}{2},rac{y_1+y_2}{2}\bigg)\).

Description : Find the co-ordinates of the circumcentre of the triangle whose vertices are (3, 0), (–1, –6) and (4, –1). Also find its circum-radius. -Maths 9th

Last Answer : Let A ≡ (2, - 2), B ≡ (-2, 1), C ≡ (5, 2 ). Then,AB = \(\sqrt{(-2-2)^2+(1+2)^2}\) = \(\sqrt{16+9}\) = \(\sqrt{25}\) = 5BC = \(\sqrt{(5+2)^2+(2-1)^2}\) = \(\sqrt{49+1}\) = \(\sqrt{50}\) = \( ... of ΔABC = \(rac{1}{2}\) x base x height = \(rac{1}{2}\) x AB x AC = \(rac{1}{2}\)x 5 x 5 = 12.5 sq. units.

Description : The co-ordinates of mid-points of sides of a triangle are (1, 2), (0, –1) and (2, –1). Find its centroid. -Maths 9th

Last Answer : ABCD is a parallelogram, if the mid-points of diagonals AC and BD have the same co-ordinates (∵ Diagonals of a parallelogram bisect each other)Co-ordinates of mid-point of AC are \(\bigg(rac{a+2}{2},rac{-11+15}{2}\bigg)\) = \(\bigg(rac ... \(rac{a+2}{2}\) = 3 and 2 = \(rac{b+1}{2}\) ⇒ a = 4, b = 3.

Description : In the adjoining figure, P and Q have co-ordinates (4, 6)and (0, 3) respectively. Find (i) the co-ordinates of R (ii) Area of quadrilateral OAPQ. -Maths 9th

Last Answer : Let the line 2x + 3y - 30 = 0 divide the join of A(3, 4) and B(7, 8) at point C(p, q) in the ratio k : 1. Then,p = \(rac{7k+3}{k+1}\), q = \(rac{8k+4}{k+1}\)As the point C lies on the line 2x + 3y - 30 ... {3}{2}+1},rac{8 imesrac{3}{2}+4}{rac{3}{2}+1}\bigg)\) = \(\big(rac{27}{5},rac{32}{5}\big)\).

Description : Find the co-ordinates of the in-centre of the triangle whose vertices are (–36, 7), (20, 7) and (0, –8). -Maths 9th

Last Answer : Let A(1, 2), B(0, -1) and C(2, -1) be the mid-points of the sides PQ, QR and RP of the triangle PQR. Let the co-ordinates of P, Q and R be (x1, y1), (x2, y2) and (x3 , y3) respectively. Then, by the mid- ... ordinates of centroid of ΔPQR = \(\bigg(rac{3+(-1)+1}{3},rac{2+2+(-4)}{3}\bigg)\) = (1, 0).

Description : If the perpendicular distance of a point P from the X-axis is 5 units and the foot of the perpendicular lies on the negative direction of X-axis, then the point P has -Maths 9th

Last Answer : (d) We know that, the perpendicular distance of a point from the X-axis gives y-coordinate of that point. Here, foot of perpendicular lies on the negative direction of X-axis, so perpendicular distance can be measure in II quadrant or III quadrant. Hence, the point P has y-coordinate = 5 or -5.

Description : If the perpendicular distance of a point P from the X-axis is 5 units and the foot of the perpendicular lies on the negative direction of X-axis, then the point P has -Maths 9th

Last Answer : (d) We know that, the perpendicular distance of a point from the X-axis gives y-coordinate of that point. Here, foot of perpendicular lies on the negative direction of X-axis, so perpendicular distance can be measure in II quadrant or III quadrant. Hence, the point P has y-coordinate = 5 or -5.

Description : Draw the graph of the equation 3x + 4y = 12 and find the co-ordinates of the points of intersection of the equation with the co-ordinate axes. -Maths 9th

Last Answer : Solution :-

Description : What do you mean by Co-ordinates (Abscissa and Ordinate)? Explain with figure. -Maths 9th

Last Answer : Co-ordinate Geometry is that branch of geometry in which two numbers, called co-ordinates are used to indicate the position of a point in a plane and which make use of algebraic methods in the study of geometric figures.

Description : Distance Formula for co-ordinates: -Maths 9th

Last Answer : The position of each point of the plane is determined with reference to the rectangular axes by means of a pair of numbers called co-ordinates which are distances of the point from the respective axes. The distance of the ... are (x, 0) and the co-ordinates of any point of the y-axis are (0, y)

Description : Section formula for co-ordinates: -Maths 9th

Last Answer : The co-ordinate axes separate the plane into four regions called the quadrants. By custom the quadrants are numbered I, II, III, IV, in the counter clockwise direction as shown in the figure. (i) For distances along the x- ... +)X′OY′3rd quadrantx < 0, y < 0(-, -)XOY′4th quadrantx > 0, y < 0(+, -)

Description : Let the opposite angular points of a square be (3, 4) and (1, – 1), Find the co-ordinates of the remaining angular points. -Maths 9th

Last Answer : P ≡ (-3, 2), Q ≡ (-5, -5), R ≡ (2, -3), S ≡ (4, 4)∴ PQ = \(\sqrt{(-5+3)^2+(-5-2)^2}\) = \(\sqrt{4+49}\) = \(\sqrt{53}\)QR = \(\sqrt{(2+5)^2+(-3+5)^2}\) = \(\sqrt{49+4}\) = \ ... of rhombus = \(rac{1}{2}\) x (Product of length of diagonals) = \(rac{1}{2}\) x \(5\sqrt2\) x \(9\sqrt2\) = 45 sq. units.

Description : (–2, –1) and (4, –5) are the co-ordinates of vertices B and D respectively of rhombus ABCD. Find the equation of the diagonal AC. -Maths 9th

Last Answer : 3\(x\) - 2y + 5 = 0 ⇒ -2y = -3\(x\) - 5 ⇒ y = \(rac{3}{2}\)\(x\) + \(rac{5}{2}\)On comparing with y = m\(x\) + c, we see that slope of given line = \(rac{3}{2}\)As the required line is perpendicular to the given line, ... - 4)⇒ 3(y - 5) = - 2\(x\) + 8 ⇒ 3y - 15 = -2\(x\) + 8 ⇒ 3y + 2\(x\) - 23 = 0

Description : If A(3, 5), B(– 5, – 4), C(7, 10) are the vertices of a parallelogram taken in order, then the co-ordinates of the fourth vertex are: -Maths 9th

Last Answer : (c) RhombusCo-ordinates of P are \(\bigg(rac{-1-1}{2},rac{-1+4}{2}\bigg)\)i.e, \(\big(-1,rac{3}{2}\big)\)Co-ordinates of Q are \(\bigg(rac{-1+5}{2},rac{4+4}{2}\bigg)\)i.e, (2, 4)Co-ordinates of R ... \sqrt{(2-2)^2+(4+1)^2}\) = \(\sqrt{25}\) = 5⇒ PR ≠ SQ ⇒ Diagonals are not equal ⇒ PQRS is a rhombus.

Description : If the co-ordinates of the mid-points of the sides of a triangle are (1, 1), (2, –3), (3, 4), find its incentre. -Maths 9th

Last Answer : (b) 3 : 2 ; m = \(-rac{2}{5}\)Let P(m, 6) divides AB in the ratio k : 1. Then co-ordinates of P are \(\bigg(\)\(rac{2k-4}{k+1}\), \(rac{8k+3}{k+1}\)\(\bigg)\)Given, co-ordinates of P are (m, 6) ⇒\(rac{2k-4}{k+1} ... 2}-4}{rac{3}{2}+1}\) = \(rac{3-4}{rac{5}{2}}\) = \(rac{-2}{5}\)∴ m = \(rac{-2}{5}\).

Description : If the points with the co-ordinates {a, ma}, {b, (m + 1)b}, {c, (m + 2)c} are collinear, then which of the following is correct ? -Maths 9th

Last Answer : (d) (7, -2)Let the co-ordinates of R be (x, y). As can be easily seen, it is a point of external division Also, PR = 2QR⇒ R divides the join of P and Q externally in the ratio 2:1. ∴ x = \(rac{2 imes2-1 imes-3}{2-1}\), ... }{2-1}\)⇒ x = 4 + 3 = 7 and y = 2 - 4 = -2. ∴ Co-ordinates of R are (7, -2).

Description : The co-ordinates of P and Q are (–3, 4) and (2, 1) respectively. -Maths 9th

Last Answer : (b) \(rac{\pi}{4}\)\(x\) cos θ + y sin θ = 2 ⇒ y sin θ = 2 - \(x\) cos θ ⇒ y = - \(x\) cot θ + 2 ⇒ Slope of this line = - cot θ Also, given \(x\) - y = 3 ⇒ y = \(x\) + 3 ⇒ Slope of this ... lines are perpendicular, - cot θ x 1 = -1⇒ cot θ = 1 ⇒ cot θ = cot \(rac{\pi}{4}\) ⇒ θ = \(rac{\pi}{4}\)

Description : Translate the polygon with co-ordinates A (3, 6), B (8, 11), & C (11, 3) by 2 units in X direction and 3 units in Y direction.

Last Answer : X’=x+tx Y’=y+ty tx=2 ty=3 for point A(3,6) x’=3+2=5 y’=6+3=9 for point B(8,11) x’=8+2=10 y’=11+3=14 for point C(11,3) x’=11+2=13 y’=3+3=6 A’=(x’,y’)=(5,9) B’=(x’,y’)=(10,14) C’=(x’,y’)=(13,6)

Description : In a right-angled triangle ABC, D is the foot of the perpendicular from B on the hypotenuse AC -Maths 9th

Last Answer : Area of ΔABC = \(rac{1}{2}\) x 3 x 4 cm2 = 6 cm2. Also, AC = \(\sqrt{3^2+4^2}\) = 5 cm.∴ Area of ΔABC = \(rac{1}{2}\) x BD x AC ⇒ 6 = \(rac{1}{2}\) BD x 5 ⇒ BD = \(rac{12}{5}\) cm.Now in ΔABD, AD = \(\ ... \(rac{1}{2}\)x AD x BD = \(rac{1}{2}\) x \(rac{9}{5}\) x \(rac{12}{5}\) = \(rac{54}{25}\) cm2.

Description : The position of a boy on the coordinate plane is given by the point (4,6) . What is the perpendicular distance from the x-axis and the y-axis ? -Maths 9th

Last Answer : answer:

Description : Find the equation of the straight line passing through the point (4, 5) and perpendicular to 3x – 2y + 5 = 0. -Maths 9th

Last Answer : There are two ways to prove it. 1st way: Area of triangle formed by the given points = 0 if they are collinear.∴ \(rac{1}{2}\) [\(x\)(2 - (y + 1) ) + 1((y + 1) - 1) + 0(1 - 2)] = 0⇒ \(rac{1}{2}\) [2\(x\) - \(x\)y - \( ... y - \(x\)y - 1 + \(x\) ⇒ x + y = \(x\)y ⇒ \(rac{1}{x}\) + \(rac{1}{y}\) = 1.

Description : A straight line passes through the points (5, 0) and (0, 3). The length of the perpendicular from the point (4, 4) on the line is: -Maths 9th

Last Answer : (b) \(rac{\sqrt{17}}{2}\)Equation of the line through the points (5, 0) and (0, 3) y - 0 = \(rac{3-0}{0-5}\) (x - 5)⇒ y = \(rac{-3}{5}\)(x - 5)⇒ 5y + 3x - 15 = 0 ∴ Distance of perpendicular from ... (rac{|20+12-15|}{\sqrt{25+9}{}}\) = \(rac{17}{\sqrt{34}}\) units. = \(rac{\sqrt{17}}{2}\) units.

Description : Find the co-ordinates of that point on the curve `x^(2)/a^(2)+y^(2)/b^(2) = 1` at which the tangent drawn is parallel to Y-axis.

Last Answer : Find the co-ordinates of that point on the curve `x^(2)/a^(2)+y^(2)/b^(2) = 1` at which the tangent drawn is parallel to Y-axis.

Description : Find the co-ordinates of that point on the curve `x^(3)+y^(3)= a^(3)` at which the tangent drawn is parallel to X-axis.

Last Answer : Find the co-ordinates of that point on the curve `x^(3)+y^(3)= a^(3)` at which the tangent drawn is parallel to X-axis.

Description : The perpendicular distance of the point P(3, 4) from the Y-axis is -Maths 9th

Last Answer : (a) We know that, abscissa or the x-coordinate of a point is its perpendicular distance from the Y-axis. So, perpendicular distance of the point P(3, 4)from Y-axis = Abscissa = 3.

Description : The perpendicular distance of the point P(3, 4) from the Y-axis is -Maths 9th

Last Answer : (a) We know that, abscissa or the x-coordinate of a point is its perpendicular distance from the Y-axis. So, perpendicular distance of the point P(3, 4)from Y-axis = Abscissa = 3.

Description : Find the perpendicular distance of the point P(5, 7) from the y-axis. -Maths 9th

Last Answer : Solution :- 5

Description : For what value of p the point (p, 2) lies on the line 3x + y = 11? -Maths 9th

Last Answer : Solution :-

Description : Prove that through a given point, we can draw only one perpendicular to a given line. -Maths 9th

Last Answer : Given Consider a line l and a point P.

Description : Prove that through a given point, we can draw only one perpendicular to a given line. -Maths 9th

Last Answer : Given Consider a line l and a point P.

Description : Draw a circle with centre at point O and radius 5 cm. Draw its chord AB, draw the perpendicular bisector of line segment AB. Does it pass through the centre of the circle? -Maths 9th

Last Answer : STEP1: Draw a circle with centre at point O and radius 5 cm. STEP2: Draw its cord AB. STEP3: With centre A as centre and radius more than half of AB, draw two arcs, one on each side ... is perpendicular bisector of AB which is chord of circle, Hence, it passes through the centre of the circle.

Description : For drawing a frequency polygon of a continuous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abscissae are, respectively -Maths 9th

Last Answer : NEED ANSWER

Description : For drawing a frequency polygon of a continuous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abscissae are, respectively -Maths 9th

Last Answer : (c) Class marks i.e., the mid-point of the classes are abscissa of the points, which we plot for frequency polygon.

Description : Let R be the rectangular window against which the lines are to be clipped using 2D Sutherland-Cohen line clipping algorithm. The rectangular window has lower left-hand corner at (-5,1) and upper righthand corner at (3,7). ... s) is/are candidate for clipping? (A) AB (B) CD (C) EF (D) AB and CD

Last Answer : (D) AB and CD

Description : The acute angle which the perpendicular from the origin on the line 7x –3y = 4 makes with the x-axis is: -Maths 9th

Last Answer : (c) negativeAs the line from the origin is perpendicular to the line 7x - 3y = 4, so its slope = \(rac{-1}{ ext{slope of }\,7x-3y=4}\)Slope of 7x - 3y - 4 = \(rac{7}{3}\)∴ Slope of line from origin = \(rac{-1} ... of x-axis⇒ θ = tan-1 \(\big(rac{-3}{7}\big)\) = - tan-1 \(\big(rac{3}{7}\big)\)

Description : The point A(0, 0), B(1, 7) and C(5, 1) are the vertices of a triangle. Find the length of the perpendicular from -Maths 9th

Last Answer : (b) 3x - y = 0 Given lines are 3x - y - 3 = 0 and 3x - y + 5 = 0. Line parallel to the given lines can be written as 3x - y + c = 0 ...(i) Let us taken a point, say ... 5c + 15 = - 3c + 15 ⇒ 8c = 0 ⇒ c = 0. Substituting c = 0 in (i), the required equation is 3x - y = 0.

Description : Draw a line segment AB of 4 cm in length. Draw a line perpendicular to AB through A and B, respectively. -Maths 9th

Last Answer : The lines are perpendicular to a common line AB. Hence, the angle between these lines will be 90+90=180∘ Since, the angle between them is 180∘, the lines are parallel to each other.

Description : Draw a line segment AB of 4 cm in length. Draw a line perpendicular to AB through A and B, respectively. -Maths 9th

Last Answer : To draw a line perpendicular to AB through A and B, respectively. Use the following steps of construction. 1.Draw a line segment AB = 4 cm. 2.Taking 4 as centre and radius more than ½ AB (i.e ... [since, it sum of interior angle on same side of transversal is 180°, then the two lines are parallel]

Description : Two lines l and m are perpendicular to the same line n.Are l and m perpendicular to each other ? -Maths 9th

Last Answer : Solution :- No, they are parallel.

Description : In Fig. 7.19, AD and BC are equal perpendicular to a line segment AB. Show that CD bisects AB. -Maths 9th

Last Answer : Solution :-

Description : If p is the length of the perpendicular drawn from the origin to the line -Maths 9th

Last Answer : Let the x-intercept = a. Then y-intercept = -1 - a The equation of the required line is \(rac{x}{a}\) + \(rac{y}{-1-a}\) = 1Given, it passes through (4, 3), so,\(rac{4}{a}\) + \(rac{3}{-1-a}\) = 1⇒ - 4 - 4a ... 2}\) - \(rac{y}{3}\) = 1When a = -2, required line is \(rac{x}{-2}\) + \(rac{y}{3}\) = 1

Description : The slope of a line perpendicular to the line which passes through the points (–k, h) and (b, – f ) is -Maths 9th

Last Answer : (b) (2, 2)The line 3x + 4y - 24 = 0 cuts the axis at A. To obtain the co-ordinates of A put y = 0, as on x-axis, y = 0. ∴ A ≡ (8, 0) ...(i) Also, on y-axis, x = 0, therefore B ≡ (0, 6 ... 8+10},rac{6 imes0+8 imes6+10 imes0}{6+8+10}\bigg)\)= \(\bigg(rac{48}{24},rac{48}{24}\bigg)\) = (2, 2).

Description : If p be the length of the perpendicular from the origin on the straight line ax + by = p and b -Maths 9th

Last Answer : (d) \(rac{17}{\sqrt{13}};\) 17 sq. unitsEquation of line BC : y - 7 = \(rac{1-7}{5-1}(x-1)\)⇒ y - 7 = \(rac{-6}{4}(x-1)\)⇒ 2 (y - 7) = -3 (x - 1) ⇒ 2y - 14 = -3x + 3 ⇒ 3x + 2y - 17 = 0. ∴ ... \) = \(2\sqrt{13}\)∴ Required area = \(rac{1}{2}\) x \(rac{17}{\sqrt{13}}\) x \(2\sqrt{13}\) = 17 sq. units.

Description : Draw a line segment AB of length 5.8 cm. Draw the perpendicular bisector of this line segment. -Maths 9th

Last Answer : Steps of Construction (i) Draw a line segment AB = 5.8 cm. (ii) Taking A as centre and radius more than 1/2AB, draw two arcs, one on either side of AB. (iii) Taking B as centre and ... . (iv) Join CD, intersecting AB at point P. Then, line CPD is the required perpendicular bisector of AB.

Description : (i) Find the co-ordinates of the points on the curve xy = 16 at which the normal drawn meet at origin. (ii) Find the points on the curve`4x^(2)+9 y^(2

Last Answer : (i) Find the co-ordinates of the points on the curve xy = 16 at which the normal drawn meet at ... ` at which the normal drawn is parallel to X-axis.

Description : A point is selected at random inside an equilateral triangle. From this point a perpendicular is dropped to each side. -Maths 9th

Last Answer : answer:

Description : WXYZ is a square of side length 30. V is a point on XY and P is a point inside the square with PV perpendicular to XY. PW = PZ = PV – 5. Find PV. -Maths 9th

Last Answer : answer: