Which is the proper measurement of average power emitted by a pulsed laser?
∙ a. Energy x time  
∙ b. Pulse energy x repetition rate  
∙ c. Pulse energy / repetition rate  
∙ d. Peak power x pulse length

1 Answer

Answer :

∙ b. Pulse energy x repetition rate

Related questions

Description : Which is the proper measurement of average power emitted by a pulsed laser? a. Energy x time b. Pulse energy x repetition rate c. Pulse energy / repetition rate d. Peak power x pulse length

Last Answer : b. Pulse energy x repetition rate

Description : Light rays that are emitted simultaneously from an LED and propagated down an optical fiber do not arrive at the far end of the fiber at the same time results to ∙ A. intramodal dispersion ∙ B. pulse length dispersion ∙ C. modal dispersion ∙ D. wavelength dispersion

Last Answer : D. wavelength dispersion

Description : The first laser emitted ∙ a. Pulses of 694 nm red light ∙ b. A continuous red beam ∙ c. Pulses of white light from a helical flash lamp ∙ d. Spontaneous emission

Last Answer : ∙ a. Pulses of 694 nm red light

Description : The _____ is equal to the number of electrons emitted per second times the electron charge ∙ a. Intensity ∙ b. Optical power ∙ c. Photocurrent ∙ d. Responsitivity

Last Answer : c. Photocurrent

Description : The upper pulse rate and information-carrying capacity of a cable is limited by ∙ A. pulse shortening ∙ B. attenuation ∙ C. light leakage ∙ D. modal dispersion

Last Answer : D. modal dispersion

Description : The upper pulse rate and information carrying capacity of a cable is limited by ∙ a. Pulse shortening ∙ b. Attenuation ∙ c. Light leakage ∙ d. Modal dispersion

Last Answer : ∙ d. Modal dispersion

Description : The law that states “When visible light of high frequency electromagnetic radiation illuminates a metallic surface, electrons are emitted” is known as ____________. ∙ A. Einstein law of photon ∙ B. Marconi’s law ∙ C. Maxwell’s law ∙ D. Plank’s law

Last Answer : D. Plank’s law

Description : What is the typical wavelength of light emitted from epitaxially grown LEDs? ∙ a. 840 nm ∙ b. 490 nm ∙ c. 480 nm ∙ d. 940 nm

Last Answer : ∙ d. 940 nm

Description : Is the width of the range of wavelengths emitted by the light source ∙ a. Bandwidth ∙ b. Chromatic Dispersion ∙ c. Spectral width ∙ d. Beamwidth

Last Answer : c. Spectral width

Description : Which of the following factor does not harm laser efficiency? ∙ a. Atmospheric absorption ∙ b. Excitation energy not absorbed ∙ c. Problems in depopulating the lower laser level ∙ d. Inefficiency in populating the upper laser level

Last Answer : ∙ a. Atmospheric absorption

Description : A dielectric waveguide for the propagation of electromagnetic energy at light frequencies ∙ a. Stripline ∙ b. Microstrip ∙ c. Laser beam ∙ d. Fiber optics

Last Answer : d. Fiber optics

Description : LASER stands for: a. Light Amplification by Simulated Emission of Radiation b. Light Amplification by Stimulated Emission of Radiation c. Light Amplification by Simulated Emitted Rays d. Light Amplification by Stimulated Emitted Rays

Last Answer : b. Light Amplification by Stimulated Emission of Radiation

Description : It indicates what signal frequencies can be propagated through a given distance of fiber cable. ∙ A. Bandwidth Distance Product ∙ B. Pulse width dispersion ∙ C. Rise time ∙ D. Cutoff frequency

Last Answer : A. Bandwidth Distance Product

Description : The laser frequency when the light has the wavelength 800 nm is ∙ a. 375 x 1012 Hz ∙ b. 475 x 1015 Hz ∙ c. 375 x 109 Hz ∙ d. 375 x 1018 Hz

Last Answer : d. 375 x 1018 Hz

Description : Which light emitter is preferred for high-speed data in a fiber-optic system? ∙ A. incandescent ∙ B. LED ∙ C. neon ∙ D. laser

Last Answer : D. laser

Description : They wrote a paper describing how it was possible to use stimulated emission for amplifying light waves (laser) as well as microwaves (maser). ∙ A. Theodore Maiman ∙ B. KC Kao and GA Bockham ∙ C. Charles Townes and Arthur Schawlow ∙ D. Kapron, Keck and Maurer

Last Answer : C. Charles Townes and Arthur Schawlow

Description : Human laser was developed by A. Javen at Bell laboratory in ∙ a. 1960 ∙ b. 1962 ∙ c. 1963 ∙ d. 1964

Last Answer : a. 1960

Description : Coherence of laser light is important for _________ ∙ a. Light propagation ∙ b. Getting laser light to pass through air ∙ c. Drilling holes ∙ d. Holography

Last Answer : d. Holography

Description : What is used to block light from a laser and let other light through ∙ a. Neutral density ∙ b. Color ∙ c. Interference ∙ d. Spatial

Last Answer : ∙ c. Interference

Description : Laser light is very bright because it is ∙ a. Pure ∙ b. White ∙ c. Coherent ∙ d. Monochromatic

Last Answer : c. Coherent

Description : Which light emitter is preferred for high speed data in a fiber-optic system ∙ a. Incandescent ∙ b. LED ∙ c. Neon ∙ d. Laser

Last Answer : ∙ d. Laser

Description : Which type of laser is the simplest to modulate directly by changing its excitation? ∙ a. Semiconductor ∙ b. Ruby ∙ c. Helium-neon ∙ d. Neodymium-YAG

Last Answer : a. Semiconductor

Description : Which of the following is used as an optical receiver in fiber optics communications ∙ a. APD ∙ b. Tunnel diode ∙ c. Laser diode ∙ d. LED

Last Answer : a. APD

Description : Which of the following contributes to the broadening of laser emission bandwidth? ∙ a. Doppler shift of moving atoms and molecules ∙ b. Amplification within the laser medium ∙ c. Coherence of the laser light ∙ d. Optical pumping of the laser transition

Last Answer : Doppler shift of moving atoms and molecules

Description : Which laser emits light in the visible range 400 to 700 nm? ∙ a. Argon-ion ∙ b. Nitrogen ∙ c. Carbon-dioxide ∙ d. Neodymium-YAG

Last Answer : a. Argon-ion

Description : Which type of laser is the simplest to modulate directly by changing its excitation? ∙ a. Semiconductor ∙ b. Ruby ∙ c. Helium-neon ∙ d. Neodymium-YAG

Last Answer : Semiconductor

Description : Laser light is ______ emission. ∙ a. Coherent ∙ b. Stimulated ∙ c. Spontaneous ∙ d. Coherent and stimulated

Last Answer : ∙ d. Coherent and stimulated

Description : What generates a light beam of a specific visible frequency? ∙ a. Laser ∙ b. Maser ∙ c. Infrared ∙ d. Flashlight

Last Answer : ∙ a. Laser

Description : In radiometric terms, it measures the rate at which electromagnetic waves transfer light energy ∙ A. Optical radiation ∙ B. Optical impedance ∙ C. Optical illusion ∙ D. Optical power

Last Answer : D. Optical power

Description : What parameter of light detector determines the range or system length that can be achieved for a given wavelength? ∙ a. Transit time ∙ b. Spectral response ∙ c. Dark current ∙ d. Responsitivity

Last Answer : ∙ b. Spectral response

Description : It is described as the flow of light energy past a given point in a specified time ∙ A. Optical radiation ∙ B. Optical impedance ∙ C. Optical illusion ∙ D. Optical power

Last Answer : D. Optical power

Description : Which cable length has the highest attenuation? ∙ A. 1 km ∙ B. 2 km ∙ C. 95 ft. ∙ D. 500 ft.

Last Answer : B. 2 km

Description : Which of the following is determined by an OTDR? ∙ a. Distance to trouble ∙ b. Length of fiber ∙ c. Refractive index ∙ d. All of these

Last Answer : d. All of these

Description : Which of the cable length has the highest attenuation? ∙ a. 1 km ∙ b. 2 km ∙ c. 95 ft ∙ d. 5500 ft

Last Answer : ∙ b. 2 km

Description : A positive lens with a focal length of 10 cm forms a real image of an object 20 am away from the lens. How far is the real image from the lens? ∙ a. 5 cm ∙ b. 10 cm ∙ c. 15 cm ∙ d. 20 cm

Last Answer : ∙ d. 20 cm

Description : What is the average loss in fiber splice? ∙ a. 0.10 dB ∙ b. 0.15 dB ∙ c. 0.20 dB ∙ d. 0.25 dB

Last Answer : 0.15 dB

Description : What is the average insertion loss of fusion splice in fiber optics? ∙ a. 0.09 dB ∙ b. 0.9 dB ∙ c. 0.19 dB ∙ d. 0.009 dB

Last Answer : ∙ b. 0.9 dB

Description : What is the photon energy for an infrared wave with frequency of 1012 Hz? ∙ a. 10.6 x 1034 joules ∙ b. 6.63 x 10-34 joules ∙ c. 6.63 x 10-22 joules ∙ d. 10.6 x 1022 joules

Last Answer : ∙ c. 6.63 x 10-22 joules

Description : The three major groups of the optical system are ∙ A. the components, the data rate and the response time ∙ B. the source, the link and the receiver ∙ C. the transmitter, the cable and the receiver ∙ D. the source, the link and the detector

Last Answer : B. the source, the link and the receiver

Description : . The product of the bit rate and distance of a fiber-optic system is 2 Gbits-km/s. What is the maximum rate at 5 km? ∙ A. 100 Mbits/s ∙ B. 200 Mbits/s ∙ C. 400 Mbits/s ∙ D. 1000 Gbits/s

Last Answer : C. 400 Mbits/s

Description : The product of the bit rate and distance of a fiber-optic system is 2 Gbits km/s. What is the maximum rate at 5 km? ∙ a. 100 Mbits/s ∙ b. 200 Mbits/s ∙ c. 400 Mbits/s ∙ d. 1000 Gbits/s

Last Answer : c. 400 Mbits/s

Description : The term responsivity as it applies to a light detector is best described as ∙ A. the time required for the signal to go from 10 to 90 percent of maximum amplitude ∙ B. the ratio of the diode ... . the ratio of the input power to output power ∙ D. the ratio of output current to input current

Last Answer : the ratio of the diode output current to the input optical power

Description : A packet of energy which is equal to the difference between the two energy levels. ∙ A. Photons ∙ B. Electronvolt ∙ C. Quantum ∙ D. Quanta

Last Answer : A. Photons

Description : The process of moving from one energy level to another is called ____________. ∙ A. Spontaneous emission ∙ B. Excited emission ∙ C. Absorption ∙ D. Spontaneous decay

Last Answer : C. Absorption

Description : The process of decaying from one energy level to another energy level is called __________. ∙ A. Spontaneous emission ∙ B. Excited emission ∙ C. Absorption ∙ D. Any of these

Last Answer : A. Spontaneous emission

Description : Any energy above the ground state is called ___________. ∙ A. normal state ∙ B. above-ground state ∙ C. excited state ∙ D. spontaneous state

Last Answer : D. spontaneous state

Description : Which of the following terms best describes the reason that light is refracted at different angles? ∙ A. Photon energy changes with wavelength ∙ B. Light is refracted as a function of surface smoothness ∙ ... determined partly by a and b ∙ D. The angle is determined by the index of the materials

Last Answer : ∙ D. The angle is determined by the index of the materials

Description : The energy of the photon is ∙ a. Directly proportional to its bandwidth ∙ b. Directly proportional to the Planck’s constant ∙ c. Directly proportional to Boltzmann’s constant ∙ d. Inversely proportional to the Planck’s constant

Last Answer : Directly proportional to the Planck’s constant

Description : The term power budgeting refers to ∙ A. the cost of cable, connectors, equipment and installation ∙ B. the loss of power due to defective components ∙ C. the total power available minus the attenuation losses ∙ D. the comparative costs of fiber and copper installations

Last Answer : C. the total power available minus the attenuation losses

Description : Which of the following cables will have the highest launch power capability? ∙ A. 50/125/0.2 ∙ B. 85/125/0.275 ∙ C. 62.5/125/0.275 ∙ D. 100/140/0.3

Last Answer : A. 50/125/0.2