The first laser emitted
∙ a. Pulses of 694 nm red light  
∙ b. A continuous red beam  
∙ c. Pulses of white light from a helical flash lamp  
∙ d. Spontaneous emission

1 Answer

Answer :

∙ a. Pulses of 694 nm red light

Related questions

Description : The first laser emitted a. Pulses of 694 nm red light b. A continuous red beam c. Pulses of white light from a helical flashlamp d. Spontaneous emission

Last Answer : a. Pulses of 694 nm red light

Description : Laser light is ______ emission. ∙ a. Coherent ∙ b. Stimulated ∙ c. Spontaneous ∙ d. Coherent and stimulated

Last Answer : ∙ d. Coherent and stimulated

Description : ____ is a light that can be coherent ∙ a. Spontaneous emission ∙ b. Monochromatic and in-phase ∙ c. Narrow beam divergence ∙ d. Monochromatic

Last Answer : ∙ b. Monochromatic and in-phase

Description : What is the typical wavelength of light emitted from epitaxially grown LEDs? ∙ a. 840 nm ∙ b. 490 nm ∙ c. 480 nm ∙ d. 940 nm

Last Answer : ∙ d. 940 nm

Description : A pn-junction diode emits light by spontaneous emission ∙ A. LED ∙ B. APD ∙ C. PIN

Last Answer : A. LED

Description : LASER stands for: a. Light Amplification by Simulated Emission of Radiation b. Light Amplification by Stimulated Emission of Radiation c. Light Amplification by Simulated Emitted Rays d. Light Amplification by Stimulated Emitted Rays

Last Answer : b. Light Amplification by Stimulated Emission of Radiation

Description : The laser frequency when the light has the wavelength 800 nm is ∙ a. 375 x 1012 Hz ∙ b. 475 x 1015 Hz ∙ c. 375 x 109 Hz ∙ d. 375 x 1018 Hz

Last Answer : d. 375 x 1018 Hz

Description : Which laser emits light in the visible range 400 to 700 nm? ∙ a. Argon-ion ∙ b. Nitrogen ∙ c. Carbon-dioxide ∙ d. Neodymium-YAG

Last Answer : a. Argon-ion

Description : The process of moving from one energy level to another is called ____________. ∙ A. Spontaneous emission ∙ B. Excited emission ∙ C. Absorption ∙ D. Spontaneous decay

Last Answer : C. Absorption

Description : The process of decaying from one energy level to another energy level is called __________. ∙ A. Spontaneous emission ∙ B. Excited emission ∙ C. Absorption ∙ D. Any of these

Last Answer : A. Spontaneous emission

Description : They wrote a paper describing how it was possible to use stimulated emission for amplifying light waves (laser) as well as microwaves (maser). ∙ A. Theodore Maiman ∙ B. KC Kao and GA Bockham ∙ C. Charles Townes and Arthur Schawlow ∙ D. Kapron, Keck and Maurer

Last Answer : C. Charles Townes and Arthur Schawlow

Description : Which of the following contributes to the broadening of laser emission bandwidth? ∙ a. Doppler shift of moving atoms and molecules ∙ b. Amplification within the laser medium ∙ c. Coherence of the laser light ∙ d. Optical pumping of the laser transition

Last Answer : Doppler shift of moving atoms and molecules

Description : Which is the proper measurement of average power emitted by a pulsed laser? ∙ a. Energy x time ∙ b. Pulse energy x repetition rate ∙ c. Pulse energy / repetition rate ∙ d. Peak power x pulse length

Last Answer : ∙ b. Pulse energy x repetition rate

Description : A dielectric waveguide for the propagation of electromagnetic energy at light frequencies ∙ a. Stripline ∙ b. Microstrip ∙ c. Laser beam ∙ d. Fiber optics

Last Answer : d. Fiber optics

Description : What generates a light beam of a specific visible frequency? ∙ a. Laser ∙ b. Maser ∙ c. Infrared ∙ d. Flashlight

Last Answer : ∙ a. Laser

Description : Laser light is very bright because it is ∙ a. Pure ∙ b. White ∙ c. Coherent ∙ d. Monochromatic

Last Answer : c. Coherent

Description : Infrared light has a wavelength that is ∙ A. less than 400 nm ∙ B. more than 700 nm ∙ C. less than 700 nm ∙ D. a little over 400 nm

Last Answer : B. more than 700 nm

Description : ange of wavelength of visible light ∙ A. 670 nm to 10^3 nm ∙ B. 440 nm to 540 nm ∙ C. 110 nm to 240 nm ∙ D. 390 nm to 770 nm

Last Answer : D. 390 nm to 770 nm

Description : The wavelength of visible light extends from ∙ a. 0.8 to 1.0 nm ∙ b. 400 to 750 nm ∙ c. 200 to 660 nm ∙ d. 700 to 1200 nm

Last Answer : b. 400 to 750 nm

Description : Dispersion is used to describe the ∙ a. Splitting of white light into its component colors ∙ b. Propagation of light in straight lines ∙ c. Bending of a beam of light when it goes from one medium to another ∙ d. Bending of a beam light when it strikes a mirror

Last Answer : a. Splitting of white light into its component colors

Description : Light rays that are emitted simultaneously from an LED and propagated down an optical fiber do not arrive at the far end of the fiber at the same time results to ∙ A. intramodal dispersion ∙ B. pulse length dispersion ∙ C. modal dispersion ∙ D. wavelength dispersion

Last Answer : D. wavelength dispersion

Description : The law that states “When visible light of high frequency electromagnetic radiation illuminates a metallic surface, electrons are emitted” is known as ____________. ∙ A. Einstein law of photon ∙ B. Marconi’s law ∙ C. Maxwell’s law ∙ D. Plank’s law

Last Answer : D. Plank’s law

Description : Is the width of the range of wavelengths emitted by the light source ∙ a. Bandwidth ∙ b. Chromatic Dispersion ∙ c. Spectral width ∙ d. Beamwidth

Last Answer : c. Spectral width

Description : Luminance efficiency is minimum for a ∙ a. Fluorescent tube ∙ b. High wattage light bulb ∙ c. Mercury vapor lamp ∙ d. Low wattage light bulb

Last Answer : d. Low wattage light bulb

Description : Any energy above the ground state is called ___________. ∙ A. normal state ∙ B. above-ground state ∙ C. excited state ∙ D. spontaneous state

Last Answer : D. spontaneous state

Description : The wavelength of a visible extends from ∙ A. 0.8 to 1.6 um ∙ B. 400 to 750 nm ∙ C. 200 to 660 nm ∙ D. 700 to 1200 nm

Last Answer : B. 400 to 750 nm

Description : What is the spectral width of an ILD? ∙ A. 0.1 nm to 1 nm ∙ B. 2 nm to 5 nm ∙ C. 1 nm to 3 nm ∙ D. 3 nm to 4 nm

Last Answer : C. 1 nm to 3 nm

Description : What is the spectral width of a standard LED? ∙ A. 20 to 40 nm ∙ B. 30 to 50 nm ∙ C. 10 to 30 nm ∙ D. 40 to 60 nm

Last Answer : 30 to 50 nm

Description : How many modes possible with a multimode step-index with a core diameter of 50 um, a core refractive index of 1.6, a cladding refractive index of 1.584, and a wavelength of 1300 nm. ∙ A. 456 ∙ B. 213 ∙ C. 145 ∙ D. 372

Last Answer : D. 372

Description : Range of wavelengths of ultraviolet ∙ A. 670 nm to 10^3 nm ∙ B. 440 nm to 540 nm ∙ C. 110 nm to 240 nm ∙ D. 10 nm to 390 nm

Last Answer : D. 10 nm to 390 nm

Description : Range of infrared ∙ A. 360 nm to 440 nm ∙ B. 670 nm to 10^3 nm ∙ C. 110 nm to 240 nm ∙ D. 770 nm to 10^6 nm

Last Answer : D. 770 nm to 10^6 nm

Description : The graded-index multimode optical fiber has a core diameter of _____ nm. ∙ a. 0.5 ∙ b. 0.05 ∙ c. 0.0005 ∙ d. 5

Last Answer : ∙ a. 0.5

Description : A step-index multimode optical fiber has a core diameter of _____ nm. ∙ a. 0.02 ∙ b. 0.2 ∙ c. 2 ∙ d. 0.002

Last Answer : b. 0.2

Description : A single mode optical fiber has a core diameter of _____ nm. ∙ a. 0.1 ∙ b. 0.01 ∙ c. 0.2 ∙ d. 0.05

Last Answer : a. 0.1

Description : Infrared range for fiber optics ∙ a. 400 – 700 nm ∙ b. 700 – 1200 nm ∙ c. 300 – 2000 nm ∙ d. 400 – 7000 nm

Last Answer : b. 700 – 1200 nm

Description : Which light emitter is preferred for high-speed data in a fiber-optic system? ∙ A. incandescent ∙ B. LED ∙ C. neon ∙ D. laser

Last Answer : D. laser

Description : Coherence of laser light is important for _________ ∙ a. Light propagation ∙ b. Getting laser light to pass through air ∙ c. Drilling holes ∙ d. Holography

Last Answer : d. Holography

Description : What is used to block light from a laser and let other light through ∙ a. Neutral density ∙ b. Color ∙ c. Interference ∙ d. Spatial

Last Answer : ∙ c. Interference

Description : Which light emitter is preferred for high speed data in a fiber-optic system ∙ a. Incandescent ∙ b. LED ∙ c. Neon ∙ d. Laser

Last Answer : ∙ d. Laser

Description : Which of the following colors is not found in the visible light wave spectrum? ∙ a. Red ∙ b. White ∙ c. Orange ∙ d. Yellow

Last Answer : b. White

Description : The _____ is equal to the number of electrons emitted per second times the electron charge ∙ a. Intensity ∙ b. Optical power ∙ c. Photocurrent ∙ d. Responsitivity

Last Answer : c. Photocurrent

Description : A device that was constructed from mirrors and selenium detectors that transmitted sound waves over a beam of light. ∙ A. lightphone ∙ B. photophone ∙ C. cameraphone ∙ D. walletphone

Last Answer : B. photophone

Description : When a beam of light enters one medium from another, which quantity will not change? ∙ a. Direction ∙ b. Speed ∙ c. Frequency ∙ d. Wavelength

Last Answer : c. Frequency

Description : Optical power is sometimes called __________. ∙ A. Radiant emission ∙ B. Radiant power ∙ C. Radiant flux ∙ D. Radiant optics

Last Answer : C. Radiant flux

Description : Human laser was developed by A. Javen at Bell laboratory in ∙ a. 1960 ∙ b. 1962 ∙ c. 1963 ∙ d. 1964

Last Answer : a. 1960

Description : Which type of laser is the simplest to modulate directly by changing its excitation? ∙ a. Semiconductor ∙ b. Ruby ∙ c. Helium-neon ∙ d. Neodymium-YAG

Last Answer : a. Semiconductor

Description : Which of the following is used as an optical receiver in fiber optics communications ∙ a. APD ∙ b. Tunnel diode ∙ c. Laser diode ∙ d. LED

Last Answer : a. APD

Description : Which of the following factor does not harm laser efficiency? ∙ a. Atmospheric absorption ∙ b. Excitation energy not absorbed ∙ c. Problems in depopulating the lower laser level ∙ d. Inefficiency in populating the upper laser level

Last Answer : ∙ a. Atmospheric absorption

Description : Which type of laser is the simplest to modulate directly by changing its excitation? ∙ a. Semiconductor ∙ b. Ruby ∙ c. Helium-neon ∙ d. Neodymium-YAG

Last Answer : Semiconductor

Description : A coupler which consists of a series of lenses and a partly reflective surface ∙ a. Beam-splitting coupler ∙ b. Reflective star coupler ∙ c. Fused coupler ∙ d. None of these

Last Answer : ∙ a. Beam-splitting coupler