The energy of the photon is
∙ a. Directly proportional to its bandwidth  
∙ b. Directly proportional to the Planck’s constant  
∙ c. Directly proportional to Boltzmann’s constant  
∙ d. Inversely proportional to the Planck’s constant

1 Answer

Answer :

Directly proportional to the Planck’s constant

Related questions

Description : The statement that "maximum wavelength of radiation is inversely proportional to the temperature" is __________ law. (A) Stefan-Boltzmann’s (B) Planck's (C) Wien's displacement (D) None of these

Last Answer : (C) Wien's displacement

Description : Which of the following terms best describes the reason that light is refracted at different angles? ∙ A. Photon energy changes with wavelength ∙ B. Light is refracted as a function of surface smoothness ∙ ... determined partly by a and b ∙ D. The angle is determined by the index of the materials

Last Answer : ∙ D. The angle is determined by the index of the materials

Description : What is the photon energy for an infrared wave with frequency of 1012 Hz? ∙ a. 10.6 x 1034 joules ∙ b. 6.63 x 10-34 joules ∙ c. 6.63 x 10-22 joules ∙ d. 10.6 x 1022 joules

Last Answer : ∙ c. 6.63 x 10-22 joules

Description : The law that states “When visible light of high frequency electromagnetic radiation illuminates a metallic surface, electrons are emitted” is known as ____________. ∙ A. Einstein law of photon ∙ B. Marconi’s law ∙ C. Maxwell’s law ∙ D. Plank’s law

Last Answer : D. Plank’s law

Description : Optical detectors are square-law devices because they respond to _____ rather than amplitude ∙ a. Intensity ∙ b. Light ∙ c. Density ∙ d. Photon

Last Answer : a. Intensity

Description : The _____ of a detector is the fraction of incident photons that produce a photoelectron or electron-hole pair ∙ a. Responsitivity ∙ b. Photon efficiency ∙ c. Aperture ∙ d. Quantum efficiency

Last Answer : d. Quantum efficiency

Description : The main benefit of light wave communications over microwaves or any other communications media are ∙ A. lower cost ∙ B. better security ∙ C. wider bandwidth ∙ D. freedom from interface

Last Answer : C. wider bandwidth

Description : For a 300-m optical fiber cable with a bandwidth distance product of 600 MHz-km, determine the bandwidth. ∙ A. 5 GHz ∙ B. 1 GHz ∙ C. 2 GHz

Last Answer : C. 2 GHz

Description : It indicates what signal frequencies can be propagated through a given distance of fiber cable. ∙ A. Bandwidth Distance Product ∙ B. Pulse width dispersion ∙ C. Rise time ∙ D. Cutoff frequency

Last Answer : A. Bandwidth Distance Product

Description : Which optical detector is used when high sensitivity and bandwidth are required? ∙ a. PMT ∙ b. APD ∙ c. PIN ∙ d. Phototransistor

Last Answer : a. PMT

Description : The bandwidth of a fiber is limited by ∙ a. Mode ∙ b. Wavelength ∙ c. Dispersion ∙ d. Frequency

Last Answer : c. Dispersion

Description : How many longitudinal modes can fall within a laser’s gain bandwidth? ∙ a. 2 ∙ b. 5 ∙ c. 9 ∙ d. No fixed limit, dependent on bandwidth and mode spacing

Last Answer : ∙ d. No fixed limit, dependent on bandwidth and mode spacing

Description : The main benefit of light-wave communications over microwaves or any other communications media is ∙ a. Lower cost ∙ b. Better security ∙ c. Wider bandwidth ∙ d. Freedom from interference

Last Answer : c. Wider bandwidth

Description : Which of the following contributes to the broadening of laser emission bandwidth? ∙ a. Doppler shift of moving atoms and molecules ∙ b. Amplification within the laser medium ∙ c. Coherence of the laser light ∙ d. Optical pumping of the laser transition

Last Answer : Doppler shift of moving atoms and molecules

Description : Is the width of the range of wavelengths emitted by the light source ∙ a. Bandwidth ∙ b. Chromatic Dispersion ∙ c. Spectral width ∙ d. Beamwidth

Last Answer : c. Spectral width

Description : The bandwidth of optical fiber ∙ a. 900M Hz ∙ b. 900 PHz ∙ c. 900 THz ∙ d. 900 EHz

Last Answer : c. 900 THz

Description : The coherence length over which there is a strong relationship between amplitudes is; (A) Directly proportional to the bandwidth (B) Inversely proportional to the bandwidth (C) The square of the bandwidth (D) None of these

Last Answer : Answer: Option B

Description : he dipole magnetic moment (μ) is directly proportional to nuclear spin (I), connected by a constant called the A. Gyromagnetic ratio (γ) B. Planck's constant (h) C. Nuclear susceptibility (χ) D. Chemical shift (δ) 

Last Answer : Gyromagnetic ratio (γ)

Description : Which type of laser is the simplest to modulate directly by changing its excitation? ∙ a. Semiconductor ∙ b. Ruby ∙ c. Helium-neon ∙ d. Neodymium-YAG

Last Answer : a. Semiconductor

Description : Which type of laser is the simplest to modulate directly by changing its excitation? ∙ a. Semiconductor ∙ b. Ruby ∙ c. Helium-neon ∙ d. Neodymium-YAG

Last Answer : Semiconductor

Description : These bends are caused by excessive pressure and tension and generally occur while fiber are bent during handling or installation. ∙ A. microbending ∙ B. macrobending ∙ C. constant-radius bending ∙ D. kinks

Last Answer : C. constant-radius bending

Description : Type of bend that occurs as a result of differences in thermal contraction rates between the core and the cladding material. ∙ A. Macrobending ∙ B. Microbending ∙ C. Quad bending ∙ D. Constant-radius bending

Last Answer : B. Microbending

Description : Modal dispersion is caused by the ∙ a. Dependence of wavelength on index of refraction ∙ b. Dependence of propagation constant on index of refraction ∙ c. Dependence of the propagation constant on the wavelength ∙ d. Dependence of the propagation constant on the mode number

Last Answer : d. Dependence of the propagation constant on the mode number

Description : Material dispersion is caused by the ∙ a. Wavelength dependence of the index of refraction ∙ b. Wavelength independence of the index of refraction ∙ c. Dependence of the propagation constant on the mode number ∙ d. Independence of the propagation constant on the mode number

Last Answer : d. Independence of the propagation constant on the mode number

Description : The ratio of speed of light in air to the speed of light in another substance is called the ∙ a. Speed factor ∙ b. Index of reflection ∙ c. Index of refraction ∙ d. Dielectric constant

Last Answer : b. Index of reflection

Description : Boyle's law states that A. pressure of a gas is inversely proportional to its volume i.e. P V = constant B. pressure of a gas is directly proportional to its volume i.e. P⁄V = constant C. ... of a gas is directly proportional to the square of its volume i.e. P ⁄ V² = constant

Last Answer : pressure of a gas is inversely proportional to its volume i.e. P × V = constant

Description : In an ideal transition curve, the radius of curvature (A) Is constant (B) At any point is directly proportional to its distance from the point of commencement (C) Is inversely proportional to the radius of main curve (D) Is directly proportional to the radius of main curve

Last Answer : Answer: Option C

Description : The quantum of light is called: a. an erg b. an e-v c. a photon d. a phonon

Last Answer : c. a photon

Description : How does the electric field strength of a standard broadcast station vary with the distance from the antenna? A. The field strength of a standard broadcast station vary with the distance from ... the distance from the antenna D. The field strength varies inversely as the distance from the antenna

Last Answer : D. The field strength varies inversely as the distance from the antenna

Description : Incorrect statement for co-efficient of friction could be that A. The coefficient of friction is denoted by the Greek letter µ. B. The coefficient of friction is directly proportional to ... D. The coefficient of friction is inversely proportional to the force pressing the surfaces together

Last Answer : The coefficient of friction is constant even in the conditions of fast slipping and high contact pressure

Description : It is described as the flow of light energy past a given point in a specified time ∙ A. Optical radiation ∙ B. Optical impedance ∙ C. Optical illusion ∙ D. Optical power

Last Answer : D. Optical power

Description : In radiometric terms, it measures the rate at which electromagnetic waves transfer light energy ∙ A. Optical radiation ∙ B. Optical impedance ∙ C. Optical illusion ∙ D. Optical power

Last Answer : D. Optical power

Description : A packet of energy which is equal to the difference between the two energy levels. ∙ A. Photons ∙ B. Electronvolt ∙ C. Quantum ∙ D. Quanta

Last Answer : A. Photons

Description : The process of moving from one energy level to another is called ____________. ∙ A. Spontaneous emission ∙ B. Excited emission ∙ C. Absorption ∙ D. Spontaneous decay

Last Answer : C. Absorption

Description : The process of decaying from one energy level to another energy level is called __________. ∙ A. Spontaneous emission ∙ B. Excited emission ∙ C. Absorption ∙ D. Any of these

Last Answer : A. Spontaneous emission

Description : Any energy above the ground state is called ___________. ∙ A. normal state ∙ B. above-ground state ∙ C. excited state ∙ D. spontaneous state

Last Answer : D. spontaneous state

Description : Which of the following factor does not harm laser efficiency? ∙ a. Atmospheric absorption ∙ b. Excitation energy not absorbed ∙ c. Problems in depopulating the lower laser level ∙ d. Inefficiency in populating the upper laser level

Last Answer : ∙ a. Atmospheric absorption

Description : Which is the proper measurement of average power emitted by a pulsed laser? ∙ a. Energy x time ∙ b. Pulse energy x repetition rate ∙ c. Pulse energy / repetition rate ∙ d. Peak power x pulse length

Last Answer : ∙ b. Pulse energy x repetition rate

Description : A dielectric waveguide for the propagation of electromagnetic energy at light frequencies ∙ a. Stripline ∙ b. Microstrip ∙ c. Laser beam ∙ d. Fiber optics

Last Answer : d. Fiber optics

Description : The energy loss over a length of pipeline according to Darcy-Weisbach equation for pipe flow is ___________ the mean velocity of flow. (A) Directly proportional to (B) Directly proportional to square of (C) Inversely proportional to (D) Inversely proportional to square of

Last Answer : (B) Directly proportional to square of

Description : The strain energy due to volumetric strain  (A) Is directly proportional to the volume  (B) Is directly proportional to the square of exerted pressure  (C) Is inversely proportional to Bulk modulus  (D) All the above 

Last Answer : (D) All the above 

Description : Drillability of fertilizer is _______________ proportional to the kinetic energy of repose a) Inversely b) Directly c) Unaffected d) None of these

Last Answer : a) Inversely

Description : What is the bandwidth of a first-order LPF with a rise time of 350 nanoseconds?

Last Answer : 1 MHz

Description : For laser diodes, the term ____________________ is used instead of bandwidth.

Last Answer : linewidth

Description : The term dispersion describes the process of ∙ A. separating light into its component frequencies ∙ B. reflecting light from a smooth surface ∙ C. the process by which light is absorbed by an uneven rough surface ∙ D. light scattering

Last Answer : A. separating light into its component frequencies

Description : Dark current in light detectors is caused by ∙ a. Thermally generated carriers in the diode ∙ b. The absence of light input ∙ c. Small leakage current ∙ d. Its imperfection

Last Answer : a. Thermally generated carriers in the diode

Description : The real image formed by a spherical mirror is ____ relative to its object ∙ a. Erect ∙ b. Inverted ∙ c. Smaller ∙ d. Larger

Last Answer : d. Larger

Description : An object nearer to a converging lens than its focal point always has a/an ______ image. ∙ a. Inverted ∙ b. The same in size ∙ c. Virtual ∙ d. Smaller size

Last Answer : c. Virtual

Description : An object farther from a converging lens than its focal point always has a/an _____ image. ∙ a. Inverted ∙ b. The same in size ∙ c. Virtual ∙ d. Smaller size

Last Answer : a. Inverted

Description : Dispersion is used to describe the ∙ a. Splitting of white light into its component colors ∙ b. Propagation of light in straight lines ∙ c. Bending of a beam of light when it goes from one medium to another ∙ d. Bending of a beam light when it strikes a mirror

Last Answer : a. Splitting of white light into its component colors