As light is coupled in a multiport deflective device, the power is reduced by
∙ A. 1.5 dB  
∙ B. 0.1 dB
∙ C. 0.5 dB
∙ D. 0.001 dB

1 Answer

Answer :

C. 0.5 dB

Related questions

Description : As light is coupled in a multiport deflective device, the power is reduced by:

Last Answer : 0.5 dB

Description : The mechanical splice attenuation loss is _____ dB or less ∙ a. 0.1 ∙ b. 0.01 ∙ c. 0.001 ∙ d. 1

Last Answer : a. 0.1

Description : For a single mode optical cable with 0.25 dB/km loss, determine the optical power 100 km from a 0.1-mW light source. ∙ A. -45 dBm ∙ B. -15 dBm ∙ C. -35 dBm

Last Answer : ∙ C. -35 dBm

Description : How much is the power loss of the fusion splice? ∙ a. 0.1 dB or less ∙ b. 0.01 dB or less ∙ c. 1 dB or less ∙ d. 10 dB or less

Last Answer : a. 0.1 dB or less

Description : What is the average loss in fiber splice? ∙ a. 0.10 dB ∙ b. 0.15 dB ∙ c. 0.20 dB ∙ d. 0.25 dB

Last Answer : 0.15 dB

Description : What is the insertion loss of connector-type splices for a single mode fiber optics? ∙ a. 0.51 dB ∙ b. 0.31 dB ∙ c. 0.49 dB ∙ d. 0.38 dB

Last Answer : d. 0.38 dB

Description : What is the average insertion loss of fusion splice in fiber optics? ∙ a. 0.09 dB ∙ b. 0.9 dB ∙ c. 0.19 dB ∙ d. 0.009 dB

Last Answer : ∙ b. 0.9 dB

Description : Fiber-optic cables with attenuation of 1.8, 3.4, 5.9 and 18 dB are linked together. The total loss is ∙ A. 7.5 dB ∙ B. 19.8 dB ∙ C. 29.1 dB ∙ D. 650 dB

Last Answer : C. 29.1 dB

Description : Fiber-optic cables with attenuations of 1.8, 3.4, 5.9, and 18 dB are linked together. The total loss is ∙ a. 7.5 dB ∙ b. 19.8 dB ∙ c. 29.1 dB ∙ d. 650 dB

Last Answer : ∙ c. 29.1 dB

Description : Cable attenuation is usually expressed in terms of ∙ A. loss per foot ∙ B. dB/km ∙ C. intensity per mile ∙ D. voltage drop per inch

Last Answer : . dB/km

Description : A fiber-optic cable has a loss of 15 dB/km. The attenuation in a cable 1000 ft. long is ∙ A. 4.57 dB ∙ B. 9.3 dB ∙ C. 24 dB ∙ D. 49.2 dB

Last Answer : A. 4.57 dB

Description : Developed an optical fiber with losses less that 2 dB/km ∙ A. Kao and Bockham ∙ B. Maiman, Kao and Bockham ∙ C. Maiman and Schawlow ∙ D. Kapron, Keck and Maurer

Last Answer : ∙ A. Kao and Bockham

Description : . A fiber-optic cable has a loss of 15 dB/km. The attenuation in a cable, 100 ft long is ∙ a. 4.57 dB ∙ b. 9.3 dB ∙ c. 24 dB ∙ d. 49.2 dB

Last Answer : ∙ a. 4.57 dB

Description : Cable attenuation is usually expressed in terms of ∙ a. Loss per foot ∙ b. dB/km ∙ c. intensity per mile ∙ d. voltage drop per inch

Last Answer : ∙ b. dB/km

Description : How can modal dispersion reduced entirely? ∙ A. Use a graded index fiber ∙ B. Use a single-mode fiber ∙ C. Use a monochromatic light source ∙ D. Use a very sensitive light detector

Last Answer : Use a single-mode fiber

Description : When light strikes a flat polished end of a fiber, the fiber loss produced can be reduced by ∙ a. Splicing ∙ b. Antireflection coating ∙ c. Insulation jacket ∙ d. All of these

Last Answer : ∙ b. Antireflection coating

Description : A device that was constructed from mirrors and selenium detectors that transmitted sound waves over a beam of light. ∙ A. lightphone ∙ B. photophone ∙ C. cameraphone ∙ D. walletphone

Last Answer : B. photophone

Description : A popular light wavelength fiber-optic cable is ∙ A. 0.7 micrometer ∙ B. 1.3 micrometer ∙ C. 1.5 micrometer ∙ D. 1.8 micrometer

Last Answer : B. 1.3 micrometer

Description : The minimum optical power a light detector can receive and still produce a usable electrical output signal. ∙ A. light responsivity ∙ B. light sensitivity ∙ C. light collectivity ∙ D. illumination

Last Answer : B. light sensitivity

Description : The term responsivity as it applies to a light detector is best described as ∙ A. the time required for the signal to go from 10 to 90 percent of maximum amplitude ∙ B. the ratio of the diode ... . the ratio of the input power to output power ∙ D. the ratio of output current to input current

Last Answer : the ratio of the diode output current to the input optical power

Description : The leakage current that flows through a photodiode with no light input ∙ A. dark voltage ∙ B. dark impedance ∙ C. dark power ∙ D. dark current

Last Answer : D. dark current

Description : It is analogous to power dissipation to copper cables, impurities in the fiber absorb the light and covert it to heat. ∙ A. power loss ∙ B. absorption loss ∙ C. resistive loss ∙ D. heat loss

Last Answer : B. absorption loss

Description : Results in reduction in the power of light wave as it travels down the cable. ∙ A. power loss ∙ B. absorption loss ∙ C. resistive loss ∙ D. heat loss

Last Answer : A. power loss

Description : It is described as the flow of light energy past a given point in a specified time ∙ A. Optical radiation ∙ B. Optical impedance ∙ C. Optical illusion ∙ D. Optical power

Last Answer : D. Optical power

Description : In radiometric terms, it measures the rate at which electromagnetic waves transfer light energy ∙ A. Optical radiation ∙ B. Optical impedance ∙ C. Optical illusion ∙ D. Optical power

Last Answer : D. Optical power

Description : Optical cable testers are used for ∙ a. Checking refractive index ∙ b. Light power out of a fiber ∙ c. Non-calibrated light into a fiber

Last Answer : b. Light power out of a fiber

Description : Optical cable testers are used for ∙ a. Checking refractive index ∙ b. Light power out of a fiber ∙ c. Non-calibrated light into a fiber

Last Answer : ∙ b. Light power out of a fiber

Description : The loss in signal power as light travels down a fiber is called ∙ a. Dispersion ∙ b. Scattering ∙ c. Absorption ∙ d. Attenuation

Last Answer : ∙ d. Attenuation

Description : .Aslightis coupledin amultipointreflective device,thepowerisreduced by a. 1.5 dB b. 0.1 dB c. 0.5 dB d. 0.001 dB

Last Answer : c. 0.5 dB

Description : The wavelength of visible light extends from ∙ a. 0.8 to 1.0 nm ∙ b. 400 to 750 nm ∙ c. 200 to 660 nm ∙ d. 700 to 1200 nm

Last Answer : b. 400 to 750 nm

Description : Which of the following cables will have the highest launch power capability? ∙ A. 50/125/0.2 ∙ B. 85/125/0.275 ∙ C. 62.5/125/0.275 ∙ D. 100/140/0.3

Last Answer : A. 50/125/0.2

Description : Refraction is the ∙ A. bending of light ∙ B. reflection of light waves ∙ C. distortion of light waves ∙ D. diffusion of light waves

Last Answer : A. bending of light

Description : The main benefit of light wave communications over microwaves or any other communications media are ∙ A. lower cost ∙ B. better security ∙ C. wider bandwidth ∙ D. freedom from interface

Last Answer : C. wider bandwidth

Description : EMD is best described by which statement? ∙ A. 70 percent of the core diameter and 70% of the fiber NA should be filled with light. ∙ B. 70 percent of the fiber diameter and 70% of the ... be measured at the output. ∙ D. 70 percent of the unwanted wavelengths should be attenuated by the fiber.

Last Answer : 70 percent of the core diameter and 70% of the fiber NA should be filled with light.

Description : The speed of light in plastic compared to the speed of light in air is ∙ A. less ∙ B. more ∙ C. the same ∙ D. zero

Last Answer : A. less

Description : The upper pulse rate and information-carrying capacity of a cable is limited by ∙ A. pulse shortening ∙ B. attenuation ∙ C. light leakage ∙ D. modal dispersion

Last Answer : D. modal dispersion

Description : Total internal reflection takes place if the light ray strikes the interface at an angle with what relationship to the critical angle? ∙ A. less than ∙ B. greater than ∙ C. equal to ∙ D. zero

Last Answer : ∙ B. greater than

Description : The time it takes a light induced carrier travel across the depletion region of the semiconductor. ∙ A. dispersion ∙ B. response time ∙ C. irradiance ∙ D. transit time

Last Answer : D. transit time

Description : A pn-junction diode emits light by spontaneous emission ∙ A. LED ∙ B. APD ∙ C. PIN

Last Answer : A. LED

Description : It is caused by the difference in the propagation time of light rays that take different paths down the fiber. ∙ A. modal dispersion ∙ B. microbending ∙ C. Rayleigh scattering ∙ D. chromatic dispersion

Last Answer : A. modal dispersion

Description : Chromatic dispersion can be eliminated by __________. ∙ A. using a monochromatic light source ∙ B. using a very small numerical aperture fiber ∙ C. using a graded-index fiber ∙ D. using a very sensitive photo detector

Last Answer : A. using a monochromatic light source

Description : Light rays that are emitted simultaneously from an LED and propagated down an optical fiber do not arrive at the far end of the fiber at the same time results to ∙ A. intramodal dispersion ∙ B. pulse length dispersion ∙ C. modal dispersion ∙ D. wavelength dispersion

Last Answer : D. wavelength dispersion

Description : It is caused by hydroxide ions in the material ∙ A. visible light absorption ∙ B. infrared absorption ∙ C. ultraviolet absorption ∙ D. ion resonance absorption

Last Answer : D. ion resonance absorption

Description : t is a result of photons of light that are absorbed by the atoms of the glass core molecule. ∙ A. ion resonance absorption ∙ B. infrared absorption ∙ C. ultraviolet absorption ∙ D. visible light absorption

Last Answer : B. infrared absorption

Description : It is caused by valence electrons in the silica material from which the fiber are manufactured. ∙ A. ion resonance absorption ∙ B. infrared absorption ∙ C. ultraviolet absorption ∙ D. visible light absorption

Last Answer : ultraviolet absorption

Description : Which of the following is not a factor in cable light loss? ∙ A. reflection ∙ B. absorption ∙ C. scattering ∙ D. dispersion

Last Answer : A. reflection

Description : Infrared light has a wavelength that is ∙ A. less than 400 nm ∙ B. more than 700 nm ∙ C. less than 700 nm ∙ D. a little over 400 nm

Last Answer : B. more than 700 nm

Description : More than one path for light rays to take down the fiber ∙ A. Multimode ∙ B. Step-index ∙ C. Single mode

Last Answer : A. Multimode

Description : Only one path for light rays to take down the fiber ∙ A. Multimode ∙ B. Step-index ∙ C. Single mode ∙ D. Graded index

Last Answer : C. Single mode