When light strikes a flat polished end of a fiber, the fiber loss produced can be reduced by ∙ a. Splicing  
∙ b. Antireflection coating  
∙ c. Insulation jacket  
∙ d. All of these

1 Answer

Answer :

∙ b. Antireflection coating

Related questions

Description : How do you reduce the loss that is produced when light strikes a flat polished end of a fiber optic? A. By painting the surface B. By inclining the surface C. By cooling D. By application of antireflection coating

Last Answer : D. By application of antireflection coating

Description : When light strikes a flat polished end of a fiber, it produces a loss of ∙ a. 14 % ∙ b. 4 % ∙ c. 10 % ∙ d. 1 %

Last Answer : ∙ b. 4 %

Description : ____ is applied to protect core and cladding of the fiber ∙ a. Insulation ∙ b. Fiber insulation ∙ c. Silica ∙ d. Polymer jacket

Last Answer : d. Polymer jacket

Description : The coating in a fiber helps protect fiber from moisture, which reduces the possibility of the occurrence of a detrimental phenomenon called ∙ A. static fatigue ∙ B. mechanical fatigue ∙ C. stress fatigue ∙ D. coating fatigue

Last Answer : ∙ A. static fatigue

Description : How can modal dispersion reduced entirely? ∙ A. Use a graded index fiber ∙ B. Use a single-mode fiber ∙ C. Use a monochromatic light source ∙ D. Use a very sensitive light detector

Last Answer : Use a single-mode fiber

Description : The core of fiber-optic cable is surrounded by ∙ A. wire braid shield ∙ B. Keviar ∙ C. cladding ∙ D. plastic insulation

Last Answer : ∙ C. cladding

Description : The core of a fiber optic is surrounded by ∙ a. Wire braid shield ∙ b. Kevlar ∙ c. Cladding ∙ d. Plastic insulation

Last Answer : ∙ c. Cladding

Description : Total internal reflection takes place if the light ray strikes the interface at an angle with what relationship to the critical angle? ∙ A. less than ∙ B. greater than ∙ C. equal to ∙ D. zero

Last Answer : ∙ B. greater than

Description : Total internal reflection takes place if the light ray strikes the interface at an angle with what relationship to the critical angle? ∙ a. Less than ∙ b. Grater than ∙ c. Equal to ∙ d. Zer

Last Answer : ∙ b. Grater than

Description : Dispersion is used to describe the ∙ a. Splitting of white light into its component colors ∙ b. Propagation of light in straight lines ∙ c. Bending of a beam of light when it goes from one medium to another ∙ d. Bending of a beam light when it strikes a mirror

Last Answer : a. Splitting of white light into its component colors

Description : Splicing fibers means ∙ a. Fusion ∙ b. Butt ∙ c. Glue ∙ d. Both fusion and butt

Last Answer : . Both fusion and butt

Description : It is analogous to power dissipation to copper cables, impurities in the fiber absorb the light and covert it to heat. ∙ A. power loss ∙ B. absorption loss ∙ C. resistive loss ∙ D. heat loss

Last Answer : B. absorption loss

Description : The loss in signal power as light travels down a fiber is called ∙ a. Dispersion ∙ b. Scattering ∙ c. Absorption ∙ d. Attenuation

Last Answer : ∙ d. Attenuation

Description : Light rays that are emitted simultaneously from an LED and propagated down an optical fiber do not arrive at the far end of the fiber at the same time results to ∙ A. intramodal dispersion ∙ B. pulse length dispersion ∙ C. modal dispersion ∙ D. wavelength dispersion

Last Answer : D. wavelength dispersion

Description : The term power budgeting refers to ∙ A. the cost of cable, connectors, equipment and installation ∙ B. the loss of power due to defective components ∙ C. the total power available minus the attenuation losses ∙ D. the comparative costs of fiber and copper installations

Last Answer : C. the total power available minus the attenuation losses

Description : When connector losses, splice losses and coupler losses are added, what is the limiting factor? ∙ A. source power ∙ B. fiber attenuation ∙ C. connector and splice loss ∙ D. detector sensitivity

Last Answer : D. detector sensitivity

Description : A fiber-optic cable has a loss of 15 dB/km. The attenuation in a cable 1000 ft. long is ∙ A. 4.57 dB ∙ B. 9.3 dB ∙ C. 24 dB ∙ D. 49.2 dB

Last Answer : A. 4.57 dB

Description : Fiber-optic cables with attenuation of 1.8, 3.4, 5.9 and 18 dB are linked together. The total loss is ∙ A. 7.5 dB ∙ B. 19.8 dB ∙ C. 29.1 dB ∙ D. 650 dB

Last Answer : C. 29.1 dB

Description : What is the average loss in fiber splice? ∙ a. 0.10 dB ∙ b. 0.15 dB ∙ c. 0.20 dB ∙ d. 0.25 dB

Last Answer : 0.15 dB

Description : The dominant loss mechanisms in silica fiber are ∙ a. Absorption and radiation losses ∙ b. Absorption and Rayleigh scattering ∙ c. Coupling and radiation losses ∙ d. Radiation and modal dispersion

Last Answer : b. Absorption and Rayleigh scattering

Description : Which is not a possible cause of optical fiber loss? ∙ a. Impurities ∙ b. Glass attenuation ∙ c. Stepped index operation ∙ d. Microbending

Last Answer : ∙ c. Stepped index operation

Description : Under normal condition, a single fiber should not be used for a two-way communication mainly because of ∙ a. Loss ∙ b. Fading ∙ c. Noise ∙ d. Attenuation

Last Answer : ∙ c. Noise

Description : Band loss is ∙ a. A reduction in transmitter power caused by earth’s surface curvature ∙ b. A reduction in strength of the signal caused by folded dipole bends ∙ c. An attenuation increase caused by bends radiating from the side of the fiber ∙ d. All of these

Last Answer : c. An attenuation increase caused by bends radiating from the side of the fiber

Description : Fiber-optic cables with attenuations of 1.8, 3.4, 5.9, and 18 dB are linked together. The total loss is ∙ a. 7.5 dB ∙ b. 19.8 dB ∙ c. 29.1 dB ∙ d. 650 dB

Last Answer : ∙ c. 29.1 dB

Description : . A fiber-optic cable has a loss of 15 dB/km. The attenuation in a cable, 100 ft long is ∙ a. 4.57 dB ∙ b. 9.3 dB ∙ c. 24 dB ∙ d. 49.2 dB

Last Answer : ∙ a. 4.57 dB

Description : What is the insertion loss of connector-type splices for a single mode fiber optics? ∙ a. 0.51 dB ∙ b. 0.31 dB ∙ c. 0.49 dB ∙ d. 0.38 dB

Last Answer : d. 0.38 dB

Description : What is the average insertion loss of fusion splice in fiber optics? ∙ a. 0.09 dB ∙ b. 0.9 dB ∙ c. 0.19 dB ∙ d. 0.009 dB

Last Answer : ∙ b. 0.9 dB

Description : Optical fibers for telecommunications are typically about _____ mils thick and consists of a glass core, a glass cladding of lower index of refraction, and a protective coating ∙ a. 5 ∙ b. 6 ∙ c. 7 ∙ d. 8

Last Answer : ∙ a. 5

Description : An incident ray can be defined as ∙ A. a light ray reflected from a flat surface ∙ B. a light directed toward a surface ∙ C. a diffused light ray ∙ D. a light ray that happens periodically

Last Answer : ∙ B. a light directed toward a surface

Description : As light is coupled in a multiport deflective device, the power is reduced by ∙ A. 1.5 dB ∙ B. 0.1 dB ∙ C. 0.5 dB ∙ D. 0.001 dB

Last Answer : C. 0.5 dB

Description : EMD is best described by which statement? ∙ A. 70 percent of the core diameter and 70% of the fiber NA should be filled with light. ∙ B. 70 percent of the fiber diameter and 70% of the ... be measured at the output. ∙ D. 70 percent of the unwanted wavelengths should be attenuated by the fiber.

Last Answer : 70 percent of the core diameter and 70% of the fiber NA should be filled with light.

Description : A popular light wavelength fiber-optic cable is ∙ A. 0.7 micrometer ∙ B. 1.3 micrometer ∙ C. 1.5 micrometer ∙ D. 1.8 micrometer

Last Answer : B. 1.3 micrometer

Description : It is caused by the difference in the propagation time of light rays that take different paths down the fiber. ∙ A. modal dispersion ∙ B. microbending ∙ C. Rayleigh scattering ∙ D. chromatic dispersion

Last Answer : A. modal dispersion

Description : Chromatic dispersion can be eliminated by __________. ∙ A. using a monochromatic light source ∙ B. using a very small numerical aperture fiber ∙ C. using a graded-index fiber ∙ D. using a very sensitive photo detector

Last Answer : A. using a monochromatic light source

Description : It is caused by valence electrons in the silica material from which the fiber are manufactured. ∙ A. ion resonance absorption ∙ B. infrared absorption ∙ C. ultraviolet absorption ∙ D. visible light absorption

Last Answer : ultraviolet absorption

Description : More than one path for light rays to take down the fiber ∙ A. Multimode ∙ B. Step-index ∙ C. Single mode

Last Answer : A. Multimode

Description : Only one path for light rays to take down the fiber ∙ A. Multimode ∙ B. Step-index ∙ C. Single mode ∙ D. Graded index

Last Answer : C. Single mode

Description : The effect of a large magnitude of the numerical aperture ∙ A. The amount of external light the fiber will accept is greater. ∙ B. The amount of external light the fiber will accept is less. ... The amount of modal dispersion will be less. ∙ D. The amount of chromatic dispersion will be greater.

Last Answer : The amount of external light the fiber will accept is greater.

Description : The maximum angle in which external light rays may strike the air/glass interface and still propagate down the fiber. ∙ A. Acceptance cone half-angle ∙ B. Acceptance cone ∙ C. Critical angle ∙ D. Angle of incidence

Last Answer : A. Acceptance cone half-angle

Description : Which light emitter is preferred for high-speed data in a fiber-optic system? ∙ A. incandescent ∙ B. LED ∙ C. neon ∙ D. laser

Last Answer : D. laser

Description : Most fiber optic light sources emit light in which spectrum? ∙ A. visible ∙ B. infrared ∙ C. ultraviolet ∙ D. X-ray

Last Answer : B. infrared

Description : Light traveling in optical fiber follows which of the following principles. ∙ a. Huygen’s principle ∙ b. Reflection theory ∙ c. Light theory ∙ d. Snell’s law

Last Answer : d. Snell’s law

Description : Optical cable testers are used for ∙ a. Checking refractive index ∙ b. Light power out of a fiber ∙ c. Non-calibrated light into a fiber

Last Answer : b. Light power out of a fiber

Description : Optical cable testers are used for ∙ a. Checking refractive index ∙ b. Light power out of a fiber ∙ c. Non-calibrated light into a fiber

Last Answer : ∙ b. Light power out of a fiber

Description : Why are visible-light LEDs not used for fiber optics? ∙ a. It has high losses ∙ b. It has short wave ∙ c. It has low attenuation ∙ d. It has weak signal

Last Answer : ∙ a. It has high losses

Description : The following are the cause of light attenuation in fiber optics except ∙ a. Backscattering ∙ b. Absorption ∙ c. Refraction ∙ d. Microbends

Last Answer : c. Refraction

Description : Most fiber-optic light sources emit light in which spectrum? ∙ a. Visible ∙ b. Infrared ∙ c. Ultraviolet ∙ d. X-ray

Last Answer : ∙ b. Infrared

Description : Which light emitter is preferred for high speed data in a fiber-optic system ∙ a. Incandescent ∙ b. LED ∙ c. Neon ∙ d. Laser

Last Answer : ∙ d. Laser