A prestressed concrete section is said to have failed in strength at the moment when all the material in the section has exhausted its
(a) Stress limitations
(b) Strain limitations
(c) Stress as well as strain limitations
(b) Laad limitations

1 Answer

Answer :

(a) Stress limitations

Related questions

Description : Inc case of prestressed concrete members, the bursting stresses develop at (a) Bond zone (b) Maximum bending moment zone (c ) Maximum shear stress zone (d) Anchorage zone

Last Answer : (d) Anchorage zone

Description : Select the incorrect statement from the following In eccentrically loaded columns, [ A ] The tensile strength of concrete is ignored [ B ] Design stress - strain curve for steel in compression is the ... different points in the section will be same [ D ] Plane section remain plane even after bending

Last Answer : [ C ] The strain at different points in the section will be same

Description : In prestressed concrete members, the shear force depends upon (a) Distributed load (b) Torsion (c) Concentrated load (d) Variation in net bending moment

Last Answer : (d) Variation in net bending moment

Description : Regarding the working stress design of under reinforced concrete section, (a) The neutral axis depth will be greater than that of a balanced section. (b) The stress in steel intension will reach ... on the tension side is also be considered for calculating the moment of resistance of the section.

Last Answer : both b&c

Description : In a singly reinforced beam, if the stress in concrete reaches its allowable limit later than the steel reaches, its permissible value, the beam section is said to be (a) Under-reinforced section (b) Over-reinforced section (c) Critical section (d) Balanced section

Last Answer : (b) Over-reinforced section

Description : If Ac , Asc and A are areas of concrete, longitudinal steel and section of a R.C.C. column and m and c are the modular ratio and maximum stress in the configuration of concrete, the strength of column is (A) cAc + m cAsc (B) c (A - Asc) + m cAsc (C) c [A + (m - 1)ASC] (D) All the above

Last Answer : Answer: Option D

Description : For a certain set of external loads, concordant profile in a prestressed beam represents to some scale the (a) Influence line diagram (b) Shear force diagram (c) Bending moment diagram (d) Williot-Mohr diagram

Last Answer : (c) Bending moment diagram

Description : The graphical representation of variation of axial load on y axis and position of cross section along x axis is called as _____ (a) Bending moment diagram (b) Shear force diagram (c) Stress-strain diagram (d) Trust diagram

Last Answer : (d) Trust diagram

Description : A beam is said to be of uniform strength, if (A) B.M. is same throughout the beam (B) Shear stress is same throughout the beam (C) Deflection is same throughout the beam (D) Bending stress is same at every section along its longitudinal axis

Last Answer : (D) Bending stress is same at every section along its longitudinal axis

Description : While testing a cast iron beam (2.5 cm × 2.5 cm) in section and a metre long simply supported at  the ends failed when a 100 kg weight is applied at the centre. The maximum stress induced is:  (A) 960 kg/cm2 (B) 980 kg/cm2 (C) 1000 kg/cm2 (D) 1200 kg/c

Last Answer : (A) 960 kg/cm

Description : Pick up the assumption for the design of a pre-stressed concrete member from the following: (A) A transverse plane section remains a plane after bending (B) During deformation limits, Hook's ... of stress in reinforcement due to changes in external loading is negligible (D) All the above

Last Answer : Answer: Option D

Description : If C is creep coefficient, f is original pre-stress in concrete, m is modular ratio, E is Young's modulus of steel and e is shrinkage strain, the combined effect of creep and shrinkage is: (A) (1 - C)mf - eE B) (C - 1)mf + eE (C) (C - 1)mf - eE (D) (1 - C)mf + eE

Last Answer : Answer: Option B

Description : The theoretical stress-strain curve of the concrete in the Limit State design of structures is correspondingly reduced by the factor [ A ] 0.35 [ B ] 0.5 [ C ] 0.67 [ D ] 0.75

Last Answer : [ C ] 0.67

Description : The stress-strain curve concrete in compression follows [ A ] a straight line [ B ] a rectangular parabolic curve [ C ] a semi circular arc [ D ] a cubic parabola

Last Answer : [ B ] a rectangular parabolic curve

Description : The theoretical stress-strain curve of the concrete in the Limit State design of structures is correspondingly reduced by the factor [ A ] 0.35 [ B ] 0.5 [ C ] 0.67 [ D ] 0.75

Last Answer : [ C ] 0.67

Description : The stress-strain curve concrete in compression follows [ A ] a straight line [ B ] a rectangular parabolic curve [ C ] a semi circular arc [ D ] a cubic parabola

Last Answer : [ B ] a rectangular parabolic curve

Description : The area under stress-strain curve represents a.Hardness of material b.Breaking strength of the material c.Energy required to cause failure d.Toughness of material e.Malleabbility of material

Last Answer : c. Energy required to cause failure

Description : Strain energy of a member may be equated to  (A) Average resistance × displacement  (B) ½ stress × strain × area of its cross-section  (C) ½ stress × strain × volume of the member  (D) ½ (stress)2  × volume of the member + Young's modulus E

Last Answer : (D) ½ (stress)2  × volume of the member + Young's modulus E

Description : State the advantages and disadvantages of prestressed concrete.

Last Answer : Advantages: 1. The c/s ismore efficiently used in fully prestressed members. 2. Dead loads are reduced considerably. 3. Improved shear resistance, due to the effect of compressive prestress, ... cube strength of 35 N/mm2 for Posttensioned system and 45 N/ mm2 for pretensioned system.

Description : Justify the necessity of use of high-grade materials in prestressed concrete.

Last Answer : 1) If mild steel is used, the working stress in it (i.e. 140 N/mm2) is more or less completely lost due to elastic deformation, creep and shrinkage of concrete. 2) The ... structural elements. With reduced dead weight of the material, larger spans become technically and economical practicable. 

Description : What is the basic principle of Prestressed concrete?

Last Answer : Principle: The compressive stresses induced by high strength steel tendons in a concrete member before the application of load, will balance the tensile stresses imposed in the member during its service.

Description : Define Prestressed concrete and state types of prestressing steel.

Last Answer : Prestressed concrete: Prestressed concrete is basically a concrete in which internal stresses of a suitable magnitude and distribution are deliberately introduced so that the stresses resulting from external loads are ... 1962, and. 4) Uncoated stress relieved strand conforming to IS: 6006-1970. 

Description : Consider the following statements: 1. For a saturated soil, Skempton's B-parameter is nearly equal to unity. 2. For an undisturbed sensitive clay, the stress-strain curve shows a peak. 3. Interlocking contributes significantly to the shearing ... 2 & 3 (b) 1 & 2 only (c) 2 & 3 only (d) 1 & 3 only

Last Answer : (a) 1, 2 & 3

Description : In a R.C section under flexure, the assumption that a plane section before bending remains plane after bending leads to (a) Strain distribution being linear across the depth (b) ... strain distribution being linear across the depth (d) Shear stress distribution being uniform along the depth

Last Answer : (a) Strain distribution being linear across the depth

Description : A beam of uniform strength has a. same cross-section throughout the beam b. same bending stress at every section c. same bending moment at every section d. same shear stress at every section

Last Answer : b. same bending stress at every section

Description : The ratio of shear stress and shear strain of an elastic material, is  (A) Modulus of Rigidity  (B) Shear Modulus  (C) Modulus of Elasticity  (D) Both (a) and (b) 

Last Answer : (D) Both (a) and (b) 

Description : Pick up the correct statement from the following: (A) The distance of the eccentric axial load from the C.G. beyond which tension develops, is known as kern distance (B) In visco ... (C) An orthotropic material has different properties in three mutually perpendicular directions (D) All the above

Last Answer : (D) All the above

Description : Which of the following theories of failure is most appropriate for a brittle material? (a) Maximum principal strain theory (b) Maximum principal stress theory (c) Maximum shear stress theory (d) Maximum strain energy theory

Last Answer : (b) Maximum principal stress theory

Description : The moment of resistance of an over-reinforcement section is determined on the basis of (a) Compressive force developed in concrete (b) Tensile force developed in steel (c) Both (a) & (b) (d) None of these

Last Answer : (a) Compressive force developed in concrete

Description : The moment of resistance of an under- reinforced section is computer on the basis of (a) Compressive force developed in concrete (b) Tensile force developed in steel (c) Both (a) & (b) (d) All the above

Last Answer : (b) Tensile force developed in steel

Description : When load is applied on concrete pavement (A) Away from edges, the maximum bending moment is negative (B) Away from edges, the maximum bending moment cause compression (C) On the edges, the maximum stress is parallel to the edge of the slab (D) None of these

Last Answer : Answer: Option C

Description : The base of a column is subjected to moment. If the intensity of bearing pressure due to axial load is equal to stress due to moment, then the bearing pressure between the base and the concrete ... Tension at one end and compression at the other end (d) Compression, verying as a parabolic profile

Last Answer : (b) Zero at one end and compression at the other end

Description : The section in which concrete is not fully stressed to its permissible value when stress in steel reaches its maximum value is (a) Under-reinforced section (b) Over-reinforced section (c) Critical section (d) Balanced section

Last Answer : (a) Under-reinforced section

Description : In general in the design of a section by limit method, it is assumed that [ A ] the stress in steel to reach its yield limit before concrete failure [ B ] the stress in concrete to ... in both concrete and steel reach their permissible values simultaneously [ D ] none of the above are correct

Last Answer : [ A ] the stress in steel to reach its yield limit before concrete failure

Description : In general in the design of a section by limit method, it is assumed that [ A ] the stress in steel to reach its yield limit before concrete failure [ B ] the stress in concrete to ... in both concrete and steel reach their permissible values simultaneously [ D ] none of the above are correct

Last Answer : [ A ] the stress in steel to reach its yield limit before concrete failure

Description : Consider the following statements: Percentage of steel for balanced designed of a singly reinforced rectangular section by limit state method depends on (1) Characteristic strength of concrete (2) Yield strength of concrete (3) Modulus of elasticity ... (b) 1, 3 and 4 (c) 1, 2 and 4 (d) 1, 2 and 3

Last Answer : 1,2,4

Description : Pick up the incorrect statement from the following. The intensity of horizontal shear stress at the elemental part of a beam section, is directly proportional to (A) Shear force (B) Area of the section ... . of the area from its neutral axis (D) Moment of the beam section about its neutral axis

Last Answer : Answer: Option D

Description : In limit state design of concrete for flexure, the area of stress block is taken as (a) 0.530 fck. Xu (b) 0.446 fck . Xu ( c) 0.420 fck .Xu (d) 0.360 fck . Xu Where fck is characteristic compressive strength of concrete and Xu is the depth of neutral axis from top.

Last Answer : (d) 0.360 fck . Xu

Description : Generally the strength of concrete is represented by the crushing stress of concrete cube of size [ A ] 50 mm [ B ] 100 mm [ C ] 150 mm [ D ] 250 mm

Last Answer : [ C ] 150 mm

Description : If a concrete column 200 200 mm in cross-section is reinforced with four steel bars of 1200  mm2  total cross-sectional area. Calculate the safe load for the column if permissible stress in  concrete is 5 N/mm2 ... 15 Ec (A) 264 MN  (B) 274 MN  (C) 284 MN  (D) 294 MN 

Last Answer : (C) 284 MN 

Description : In a singly reinforced beam, if the permissible stress in concrete reaches earlier than that in steel, the beam section is called (A) Under-reinforced section (B) Over reinforced section (C) Economic section (D) Critical section

Last Answer : Answer: Option B

Description : If the permissible stress in steel in tension is 140 N/mm², then the depth of neutral axis for a singly reinforced rectangular balanced section will be (A) 0.35 d (B) 0.40 d (C) 0.45 d (D) Dependent on grade of concrete also

Last Answer : Answer: Option B

Description : According to Whitney's theory, depth of stress block for a balanced section of a concrete beam is limited to (A) 0.43 d (B) 0.537 d (C) 0.68 d (D) 0.85 d Where d is effective depth of beam

Last Answer : Answer: Option B

Description : For a reinforced concrete section, the shape of shear stress diagram is (A) Wholly parabolic (B) Wholly rectangular (C) Parabolic above neutral axis and rectangular below neutral axis (D) Rectangular above neutral axis and parabolic below neutral axis

Last Answer : Answer: Option C

Description : For a reinforced concrete beam section, the shape of shear stress diagram is (a) Parabolic over the whole section with maximum value at the neutral axis. (b) Parabolic above the neutral axis and rectangular below the neutral axis. (c) Linearly varying as the distance form the N.A. (d) All the above.

Last Answer : (b) Parabolic above the neutral axis and rectangular below the neutral axis.

Description : The effective depth of a singly reinforced rectangular beam is 300mm. the section is over-reinforced and the neutral axis is 120mm below the top. If the maximum stress attained by concrete is 5N/mn2 and the modular ratio ... in the steel will (a) 130N/mm2 (b) 135N/mm2 (c) 160N/mm2 (d) 180N/mm2

Last Answer : (b) 135N/mm2

Description : For an over -reinforced (singly reinforced )rectangular reinforced concrete section (a) The lever arm will be less than that for a balanced section (b) The maximum stress developed by concrete will be equal ... c) The maximum stress developed by steel will be equal to the allowable (d) All the above

Last Answer : (b) The maximum stress developed by concrete will be equal to allowable stress in concrete

Description : In a singly reinforced beam, if the permissible stress in steel reaches earlier than that of concrete, the beam section as called [ A ] Under reinforced section [ B ] Over reinforced section [ C ] Balanced section [ D ] Critical section

Last Answer : [ A ] Under reinforced section

Description : In a Singly reinforced beam, if the permissible stress in concrete reaches earlier than that in steel, the beam section is called [ A ] Under reinforced section [ B ] Over reinforced section [ C ] Balanced section [ D ] Critical section

Last Answer : [ B ] Over reinforced section