The value of the product of molecular weight and the gas characteristic constant for all the gases in M.K.S. unit is  (a) 29.27 kgfm/mol°K  (b) 8314kgfm/mol°K  (c) 848kgfm/mol°K  (d) 427kgfm/mol°K  (e) 735 kgfm/mol°K.

1 Answer

Answer :

Answer : c

Related questions

Description : The value of the product of molecular weight and the gas characteristic constant for all the gases in S.I. units is  (a) 29.27 J/kmol°K  (b) 83.14J/kmol°K  (c) 848J/kmol°K  (d) All J/kmol °K  (e) 735 J/kmol °K.

Last Answer : Answer : b

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : The same volume of all gases would represent their  (a) densities  (b) specific weights  (c) molecular weights  (d) gas characteristic constants  (e) specific gravities.

Last Answer : Answer : c

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : Universal gas constant is defined as equal to product of the molecular weight of the gas and  (a) specific heat at constant pressure  (b) specific heat at constant volume  (c) ratio of two specific heats  (d) gas constant  (e) unity.

Last Answer : Answer : d

Description : To convert volumetric analysis to gravimetric analysis, the relative volume of each constituent of the flue gases is  (a) divided by its molecular weight  (b) multiplied by its molecular weight  (c) ... by its density  (d) multiplied by its specific weight  (e) divided by its specific weight.

Last Answer : Answer : b

Description : According to Dalton's law, the total pres sure of the mixture of gases is equal to  (a) greater of the partial pressures of all  (b) average of the partial pressures of all  (c) sum ... all  (d) sum of the partial pressures of all divided by average molecular weight  (e) atmospheric pressure.

Last Answer : Answer : c

Description : Barometric pressure is equal to  (a) 760 mm Hg  (b) zero mm Hg  (c) 735.6 mm Hg  (d) 1 mm Hg  (e) 100mm Hg.

Last Answer : Answer : a

Description : I kgf/cm2 is equal to  (a) 760 mm Hg  (b) zero mm Hg  (c) 735.6 mm Hg  (d) 1 mm Hg  (e) l00 mm Hg.

Last Answer : Answer : c

Description : The universal gas constant of a gas is the product of molecular mass of the gas and the gas constant.  A. Correct  B. Incorrect

Last Answer : Answer: A

Description : The statement that molecular weights of all gases occupy the same volume is known as  (a) Avogadro’s hypothesis  (b) Dalton’s law  (c) Gas law  (d) Law of thermodynamics  (e) Joule’s law.

Last Answer : Answer : a

Description : The compressibility factor, x, is used for predicting the behavior of nonideal gases. How is the compressibility ty factor defined relative to an ideal gas? (subscript c refers to critical value)  A. ... compressibility factor, x, is an dimensionless constant given by pV=zRT. Therefore z = pV / RT

Last Answer : z = pV/ RT

Description : A cylinder contains oxygen at a pressure of 10 atm and a temperature of 300 K. The volume of the cylinder is 10 liters. What is the mass of the oxygen in grams? Molecular weight (MW) of oxygen is 32 g/mole?  a. 125.02  b. 130.08  c. 135.05  d. 120.04

Last Answer : 130.08 {(10atm)(10)(32)/(0.0821) (300K)}

Description : What is the value of the universal gas constant in kJ/kmol K? ∙  A. 10.73  B. 1.986  C. 8.314  D. 1545

Last Answer : 8.314

Description : Characteristic gas constant of a gas is equal to  (a) C/Cv  (b) Cv/Cp  (c) Cp – Cv  (d) Cp + Cv  (e) Cp x Cv

Last Answer : Answer : c

Description : A 0.064 kg of octane vapor (MW = 114) is mixed with0.91 kg of air (MW = 29.0) in the manifold of an Engine. The total pressure in the manifold is 86.1 kPa, and a temperature is 290 K. assume octane behaves ideally. What is ... of the air in the mixture in KPa?  a. 46.8  b. 48.6  c. 84.6  d. 64.8

Last Answer : 84.6

Description : According to Avogadro’s law, the density of any two gases is __________ their molecular masses, if the gases are at the same temperature and pressure.  A. equal to  B. directly proportional to  C. inversely proportional to

Last Answer : Answer: B

Description : According to Avogadro's law, for a given pressure and temperature, each molecule of a gas  (a) occupies volume proportional to its molecular weight  (b) occupies volume proportional to its specific ...  (d) occupies volume inversely proportional to its specific weight  (e) occupies same volume.

Last Answer : Answer : e

Description : The gas constant is equal to  a. Cp – Cv  b. Cp + Cv  c. Cp – Cv + k  d. None of the above

Last Answer : Cp – Cv

Description : There are 1.36 kg of gas, for which R = 377 J/kg.k and k = 1.25, that undergo a nonflow constant volume process from p1 = 551.6 kPa and t1 = 60°C to p2 = 1655 kPa. During the process the gas is internally stirred and ... (Formula: T2= T1p2/ p1)  a. 999 K  b. 888 K  c. 456 K  d. One of the above

Last Answer : 999 K

Description : Which of the following parameters is constant for a mole for most of the gases at a given temperature and pressure  (a) enthalpy  (b) volume  (c) mass  (d) entropy  (e) specific volume.

Last Answer : Answer : b

Description : According to which law, all perfect gases change in volume by l/273th of their original volume at 0°C for every 1°C change in temperature when pressure remains constant  (a) Joule’s law  (b) Boyle’s law  (c) Regnault’s law  (d) Gay-Lussac law  (e) Charles’ law.

Last Answer : Answer : e

Description : Boyle’s law i.e. pV = constant is applicable to gases under  (a) all ranges of pressures  (b) only small range of pressures  (c) high range of pressures  (d) steady change of pressures  (e) atmospheric conditions.

Last Answer : Answer : b

Description : The value of gas constant (R) in S. I. units is  A. 0.287 J/kgK  B. 2.87 J/kgK  C. 28.7 J/kgK  D. 287 J/kgK

Last Answer : Answer: D

Description : Two masses, one of the 10kg and the other unknown, are placed on a scale in a region where g = 9.67 m/sec2 . The combined weight of these two masses is 174.06 N. Find the unknown mass in kg.  a. 20 kg  b. 19 kg  c. 18 kg  d. 17 kg formula: m=Fg k / g

Last Answer : 18 kg

Description : What is the specific weight of water at standard condition? (Formula: γ = ρg / k)  a. 1000 kgm/m3  b. 9.8066 m/s2  c. 1000 kgf/m3  d. None of the above

Last Answer : 1000 kgf/m3

Description : Minimum work in compressor is possible when the value of adiabatic index n is equal to  (a) 0.75  (b) 1  (c) 1.27  (d) 1.35  (e) 2.

Last Answer : Answer : b

Description : Refer to problem # 11. Determine the force that accelerates if to 12 m/s^2. horizontally along frictionless plane.  A. 2474.23 N  B. 2574.23 N  C. 3474.23 N  D. 2374.23 N Formula : M = wk / g F = ma /k

Last Answer : 2474.23 N

Description : A system weighing 2kN. Determine the force that accelerate if to 12 m/s^2. a. vertically upward when g = 9.7 m/s^2  A. 4474.23 N  B.5484.23 N  C.4495.23 N  D.5488.23 N Formula: F = m/k (a +g)

Last Answer : 4474.23 N

Description : The specific heat at constant volume is  A. the amount of heat required to raise the temperature of unit mass of gas through one degree, at constant pressure  B. the amount of heat required to raise ... to raise the temperature of 1 kg of water through one degree  D. any one of the above

Last Answer : Answer: B

Description : The amount of heat required to raise the temperature of the unit mass of gas through one degree at constant volume, is called  A.specific heat at constant volume  B.specific heat at constant pressure  C.kilo Joule  D.none of these

Last Answer : Answer: A

Description : Molecular volume of any perfect gas at 600 x 103 N/m2 and 27°C will be  (a) 4.17m3/kgmol  (b) 400 m3/kg mol  (c) 0.15 m3/kg mol  (d) 41.7 m3/kg mol  (e) 417m3/kgmol.

Last Answer : Answer : a

Description : The unit of energy in S.I. units is  (a) watt  (b) joule  (c) joule/s  (d) joule/m  (e) joule m.

Last Answer : Answer : b

Description : Gas is enclosed in a cylinder with a weighted piston as the stop boundary. The gas is heated and expands from a volume of 0.04 m^3 to 0.10 m^3 at a constant pressure of 200kPa.Calculate the work done by the system.  A. 8 kJ  B. 10 kJ  C.12 kJ  D.14 kJ Formula: W = p(V2-V1)

Last Answer : 12 kJ

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : The gas constant (R) is equal to the __________ of two specific heats.  A. sum  B. difference  C. product  D. ratio

Last Answer : Answer: B

Description : According to kinetic theory of gases, the absolute zero temperature is attained when  (a) volume of the gas is zero  (b) pressure of the gas is zero  (c) kinetic energy of the molecules is zero  (d) specific heat of gas is zero  (e) mass is zero.

Last Answer : Answer : c

Description : Gases have  (a) only one value of specific heat  (b) two values of specific heat  (c) three values of specific heat  (d) no value of specific heat  (e) under some conditions one value and sometimes two values of specific heat.

Last Answer : Answer : b

Description : The gas constant of a certain gas is the ratio of:  A. Universal gas constant to molar mass  B. Universal gas constant to atomic weight  C. Universal gas constant to atomic number  D. Universal gas constant to number of moles

Last Answer : Universal gas constant to molar mass

Description : The molecular number density of an ideal gas at standard temperature and pressure in cm3  a. Froude number  b. Loschmidt number  c. Mach number  d. Reynold number

Last Answer : Loschmidt number

Description : The energy associated with individual molecules in a gas, liquid or solid.  a. Specific Energy  b. Molecular Energy  c. Internal Energy  d. Phase Energy

Last Answer : Internal Energy

Description : Which of the following gas has a minimum molecular mass?  A. Oxygen  B. Nitrogen  C. Hydrogen  D. Methane

Last Answer : Answer: C

Description : Considering one mole of any gas, the equation of state of ideal gases is simply the ______ law.  A. Gay-Lussac law  B. Dulong and Petit  C. Avogadro’s  D. Henry’s

Last Answer : Avogadro’s

Description : Specific heat capacity in SI unit.  a. kJ / kg.k  b. kJ / kg  c. kN / kg  d. None of the above

Last Answer : kJ / kg.k

Description : A mass of 5kg is 100m above a given datum where local g = 9.75 m/s2 . Find the gravitational force in newtons. (Formula: Fg= mg/k )  a. 48.75 N  b. 50 N  c. 45 N  d. None of the above

Last Answer : 48.75 N

Description : A 30-m vertical column of fluid (density 1878 kg/m3 ) is located where g= 9.65 mps2 . Find the pressure at the base of the column. (Formula: pg= gρhg/k )  a. 543680 N/m2  b. 543.68 kPa (gauge)  c. Both a & b  d. None of the above

Last Answer : Both a & b

Description : A heat exchange process in which the product of pressure and volume remains constant is known as  (a) heat exchange process  (b) throttling process  (c) isentropic process  (d) adiabatic process  (e) hyperbolic process.

Last Answer : Answer : e

Description : What is the weight of a66-kgm man at standard condition? (Formula: Fg= mg / k)  a. 66 kgf  b. 66 kgm  c. 66 lbm  d. 66 gf

Last Answer : 66 kgf

Description : The energy of molecular motion appears as  (a) heat  (b) potential energy  (c) surface tension  (d) friction  (e) increase in pressure.

Last Answer : Answer : a